Concrete groups
module group-theory.concrete-groups where
Imports
open import foundation.0-connected-types open import foundation.1-types open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.mere-equality open import foundation.propositional-truncations open import foundation.propositions open import foundation.sets open import foundation.truncated-types open import foundation.truncation-levels open import foundation.unit-type open import foundation.universe-levels open import group-theory.groups open import higher-group-theory.higher-groups open import structured-types.pointed-types
Idea
A concrete group is a pointed connected 1-type.
Definition
Concrete-Group : (l : Level) → UU (lsuc l) Concrete-Group l = Σ (∞-Group l) (λ G → is-set (type-∞-Group G)) module _ {l : Level} (G : Concrete-Group l) where ∞-group-Concrete-Group : ∞-Group l ∞-group-Concrete-Group = pr1 G classifying-pointed-type-Concrete-Group : Pointed-Type l classifying-pointed-type-Concrete-Group = classifying-pointed-type-∞-Group ∞-group-Concrete-Group classifying-type-Concrete-Group : UU l classifying-type-Concrete-Group = classifying-type-∞-Group ∞-group-Concrete-Group shape-Concrete-Group : classifying-type-Concrete-Group shape-Concrete-Group = shape-∞-Group ∞-group-Concrete-Group is-0-connected-classifying-type-Concrete-Group : is-0-connected classifying-type-Concrete-Group is-0-connected-classifying-type-Concrete-Group = is-0-connected-classifying-type-∞-Group ∞-group-Concrete-Group mere-eq-classifying-type-Concrete-Group : (X Y : classifying-type-Concrete-Group) → mere-eq X Y mere-eq-classifying-type-Concrete-Group = mere-eq-classifying-type-∞-Group ∞-group-Concrete-Group elim-prop-classifying-type-Concrete-Group : {l2 : Level} (P : classifying-type-Concrete-Group → Prop l2) → type-Prop (P shape-Concrete-Group) → ((X : classifying-type-Concrete-Group) → type-Prop (P X)) elim-prop-classifying-type-Concrete-Group = elim-prop-classifying-type-∞-Group ∞-group-Concrete-Group type-Concrete-Group : UU l type-Concrete-Group = type-∞-Group ∞-group-Concrete-Group is-set-type-Concrete-Group : is-set type-Concrete-Group is-set-type-Concrete-Group = pr2 G set-Concrete-Group : Set l set-Concrete-Group = pair type-Concrete-Group is-set-type-Concrete-Group is-1-type-classifying-type-Concrete-Group : is-trunc one-𝕋 classifying-type-Concrete-Group is-1-type-classifying-type-Concrete-Group X Y = apply-universal-property-trunc-Prop ( mere-eq-classifying-type-Concrete-Group shape-Concrete-Group X) ( is-set-Prop (Id X Y)) ( λ { refl → apply-universal-property-trunc-Prop ( mere-eq-classifying-type-Concrete-Group shape-Concrete-Group Y) ( is-set-Prop (Id shape-Concrete-Group Y)) ( λ { refl → is-set-type-Concrete-Group})}) classifying-1-type-Concrete-Group : Truncated-Type l one-𝕋 classifying-1-type-Concrete-Group = pair classifying-type-Concrete-Group is-1-type-classifying-type-Concrete-Group Id-BG-Set : (X Y : classifying-type-Concrete-Group) → Set l Id-BG-Set X Y = Id-Set classifying-1-type-Concrete-Group X Y unit-Concrete-Group : type-Concrete-Group unit-Concrete-Group = unit-∞-Group ∞-group-Concrete-Group mul-Concrete-Group : (x y : type-Concrete-Group) → type-Concrete-Group mul-Concrete-Group = mul-∞-Group ∞-group-Concrete-Group mul-Concrete-Group' : (x y : type-Concrete-Group) → type-Concrete-Group mul-Concrete-Group' x y = mul-Concrete-Group y x associative-mul-Concrete-Group : (x y z : type-Concrete-Group) → Id ( mul-Concrete-Group (mul-Concrete-Group x y) z) ( mul-Concrete-Group x (mul-Concrete-Group y z)) associative-mul-Concrete-Group = associative-mul-∞-Group ∞-group-Concrete-Group left-unit-law-mul-Concrete-Group : (x : type-Concrete-Group) → Id (mul-Concrete-Group unit-Concrete-Group x) x left-unit-law-mul-Concrete-Group = left-unit-law-mul-∞-Group ∞-group-Concrete-Group right-unit-law-mul-Concrete-Group : (y : type-Concrete-Group) → Id (mul-Concrete-Group y unit-Concrete-Group) y right-unit-law-mul-Concrete-Group = right-unit-law-mul-∞-Group ∞-group-Concrete-Group coherence-unit-laws-mul-Concrete-Group : Id ( left-unit-law-mul-Concrete-Group unit-Concrete-Group) ( right-unit-law-mul-Concrete-Group unit-Concrete-Group) coherence-unit-laws-mul-Concrete-Group = coherence-unit-laws-mul-∞-Group ∞-group-Concrete-Group inv-Concrete-Group : type-Concrete-Group → type-Concrete-Group inv-Concrete-Group = inv-∞-Group ∞-group-Concrete-Group left-inverse-law-mul-Concrete-Group : (x : type-Concrete-Group) → Id (mul-Concrete-Group (inv-Concrete-Group x) x) unit-Concrete-Group left-inverse-law-mul-Concrete-Group = left-inverse-law-mul-∞-Group ∞-group-Concrete-Group right-inverse-law-mul-Concrete-Group : (x : type-Concrete-Group) → Id (mul-Concrete-Group x (inv-Concrete-Group x)) unit-Concrete-Group right-inverse-law-mul-Concrete-Group = right-inverse-law-mul-∞-Group ∞-group-Concrete-Group abstract-group-Concrete-Group : Group l pr1 (pr1 abstract-group-Concrete-Group) = set-Concrete-Group pr1 (pr2 (pr1 abstract-group-Concrete-Group)) = mul-Concrete-Group pr2 (pr2 (pr1 abstract-group-Concrete-Group)) = associative-mul-Concrete-Group pr1 (pr1 (pr2 abstract-group-Concrete-Group)) = unit-Concrete-Group pr1 (pr2 (pr1 (pr2 abstract-group-Concrete-Group))) = left-unit-law-mul-Concrete-Group pr2 (pr2 (pr1 (pr2 abstract-group-Concrete-Group))) = right-unit-law-mul-Concrete-Group pr1 (pr2 (pr2 abstract-group-Concrete-Group)) = inv-Concrete-Group pr1 (pr2 (pr2 (pr2 abstract-group-Concrete-Group))) = left-inverse-law-mul-Concrete-Group pr2 (pr2 (pr2 (pr2 abstract-group-Concrete-Group))) = right-inverse-law-mul-Concrete-Group op-abstract-group-Concrete-Group : Group l pr1 (pr1 op-abstract-group-Concrete-Group) = set-Concrete-Group pr1 (pr2 (pr1 op-abstract-group-Concrete-Group)) = mul-Concrete-Group' pr2 (pr2 (pr1 op-abstract-group-Concrete-Group)) x y z = inv (associative-mul-Concrete-Group z y x) pr1 (pr1 (pr2 op-abstract-group-Concrete-Group)) = unit-Concrete-Group pr1 (pr2 (pr1 (pr2 op-abstract-group-Concrete-Group))) = right-unit-law-mul-Concrete-Group pr2 (pr2 (pr1 (pr2 op-abstract-group-Concrete-Group))) = left-unit-law-mul-Concrete-Group pr1 (pr2 (pr2 op-abstract-group-Concrete-Group)) = inv-Concrete-Group pr1 (pr2 (pr2 (pr2 op-abstract-group-Concrete-Group))) = right-inverse-law-mul-Concrete-Group pr2 (pr2 (pr2 (pr2 op-abstract-group-Concrete-Group))) = left-inverse-law-mul-Concrete-Group
Example
The trivial concrete group
trivial-Concrete-Group : {l : Level} → Concrete-Group l trivial-Concrete-Group = trivial-∞-Group , is-trunc-is-contr (succ-𝕋 (succ-𝕋 (succ-𝕋 neg-two-𝕋))) is-contr-raise-unit raise-star raise-star