Normal subgroups of concrete groups
module group-theory.normal-subgroups-concrete-groups where
Imports
open import foundation.universe-levels open import group-theory.concrete-group-actions open import group-theory.concrete-groups open import group-theory.subgroups-concrete-groups open import group-theory.transitive-concrete-group-actions
Idea
A normal subgroup is a fixed point of the conjugation action on the (large) set of all subgroups
Definition
normal-subgroup-Concrete-Group : {l1 : Level} (l2 : Level) (G : Concrete-Group l1) → UU (l1 ⊔ lsuc l2) normal-subgroup-Concrete-Group l2 G = (u : classifying-type-Concrete-Group G) → subgroup-action-Concrete-Group l2 G u module _ {l1 l2 : Level} (G : Concrete-Group l1) (H : normal-subgroup-Concrete-Group l2 G) where subgroup-normal-subgroup-Concrete-Group : subgroup-Concrete-Group l2 G subgroup-normal-subgroup-Concrete-Group = H (shape-Concrete-Group G) action-normal-subgroup-Concrete-Group : action-Concrete-Group l2 G action-normal-subgroup-Concrete-Group = action-subgroup-Concrete-Group G subgroup-normal-subgroup-Concrete-Group transitive-action-normal-subgroup-Concrete-Group : transitive-action-Concrete-Group l2 G transitive-action-normal-subgroup-Concrete-Group = transitive-action-subgroup-Concrete-Group G ( subgroup-normal-subgroup-Concrete-Group)