Products of Cauchy series of species of types in subuniverses
module species.products-cauchy-series-species-of-types-in-subuniverses where
Imports
open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.equivalences open import foundation.functions open import foundation.functoriality-cartesian-product-types open import foundation.subuniverses open import foundation.universe-levels open import species.cauchy-products-species-of-types open import species.cauchy-products-species-of-types-in-subuniverses open import species.cauchy-series-species-of-types open import species.cauchy-series-species-of-types-in-subuniverses open import species.products-cauchy-series-species-of-types open import species.species-of-types-in-subuniverses
Idea
The product of two Cauchy series is just the pointwise product.
Definition
module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : UU l5) where product-cauchy-series-species-subuniverse : UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5) product-cauchy-series-species-subuniverse = ( cauchy-series-species-subuniverse P (subuniverse-global-subuniverse Q l3) S X) × ( cauchy-series-species-subuniverse P (subuniverse-global-subuniverse Q l4) T X)
Properties
Equivalent with species of types
module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : UU l5) where equiv-product-cauchy-series-Σ-extension-species-subuniverse : ( product-cauchy-series-species-types ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S)) ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( T)) X) ≃ product-cauchy-series-species-subuniverse P Q S T X equiv-product-cauchy-series-Σ-extension-species-subuniverse = equiv-prod ( inv-equiv ( equiv-cauchy-series-Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S) ( X))) ( inv-equiv ( equiv-cauchy-series-Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( T) ( X)))
The Cauchy series associated to the Cauchy product of S
and T
is equal to the product of theirs Cauchy series
module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) (C1 : is-closed-under-cauchy-product-species-subuniverse P Q) (C2 : is-closed-under-coproducts-subuniverse P) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : UU l5) where equiv-cauchy-series-cauchy-product-species-subuniverse : cauchy-series-species-subuniverse ( P) ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4)) ( cauchy-product-species-subuniverse P Q C1 S T) ( X) ≃ product-cauchy-series-species-subuniverse P Q S T X equiv-cauchy-series-cauchy-product-species-subuniverse = ( equiv-product-cauchy-series-Σ-extension-species-subuniverse P Q S T X ∘e ( ( equiv-cauchy-series-cauchy-product-species-types ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S)) ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( T)) ( X)) ∘e ( ( equiv-cauchy-series-equiv-species-types ( λ z → Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4)) ( cauchy-product-species-subuniverse P Q C1 S T) z) ( λ z → cauchy-product-species-types ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S)) ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( T)) z) ( equiv-cauchy-product-Σ-extension-species-subuniverse P Q C1 C2 S T) ( X)) ∘e ( ( equiv-cauchy-series-Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4)) ( cauchy-product-species-subuniverse P Q C1 S T) ( X))))))