Geometric realizations of undirected graphs
module graph-theory.geometric-realizations-undirected-graphs where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functions open import foundation.symmetric-identity-types open import foundation.universe-levels open import graph-theory.reflecting-maps-undirected-graphs open import graph-theory.undirected-graphs
Idea
The geometric realization of an undirected graph G
is the initial type X
equipped with a reflecting map from G
into X
.
Definition
precomp-reflecting-map-Undirected-Graph : {l1 l2 l3 l4 : Level} (G : Undirected-Graph l1 l2) {X : UU l3} (Y : UU l4) → reflecting-map-Undirected-Graph G X → (X → Y) → reflecting-map-Undirected-Graph G Y pr1 (precomp-reflecting-map-Undirected-Graph G Y f h) = h ∘ vertex-reflecting-map-Undirected-Graph G f pr2 (precomp-reflecting-map-Undirected-Graph G Y f h) v e = map-symmetric-Id h ( unordered-pair-vertices-reflecting-map-Undirected-Graph G f v) ( edge-reflecting-map-Undirected-Graph G f v e) is-geometric-realization-reflecting-map-Undirected-Graph : {l1 l2 l3 : Level} (l : Level) (G : Undirected-Graph l1 l2) {X : UU l3} (f : reflecting-map-Undirected-Graph G X) → UU (l1 ⊔ l2 ⊔ l3 ⊔ lsuc l) is-geometric-realization-reflecting-map-Undirected-Graph l G f = (Y : UU l) → is-equiv (precomp-reflecting-map-Undirected-Graph G Y f)