Reflecting maps for equivalence relations
module foundation.reflecting-maps-equivalence-relations where
Imports
open import foundation.effective-maps-equivalence-relations open import foundation.homotopies open import foundation-core.contractible-types open import foundation-core.dependent-pair-types open import foundation-core.equivalence-relations open import foundation-core.equivalences open import foundation-core.fundamental-theorem-of-identity-types open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.sets open import foundation-core.subtype-identity-principle open import foundation-core.universe-levels
Idea
A map f : A → B
out of a type A
equipped with an equivalence relation R
is
said to reflect R
if we have R x y → Id (f x) (f y)
for every x y : A
.
Definitions
Maps reflecting equivalence relations
module _ {l1 l2 : Level} {A : UU l1} (R : Eq-Rel l2 A) where reflects-Eq-Rel : {l3 : Level} {B : UU l3} → (A → B) → UU (l1 ⊔ l2 ⊔ l3) reflects-Eq-Rel f = {x y : A} → sim-Eq-Rel R x y → (f x = f y) reflecting-map-Eq-Rel : {l3 : Level} → UU l3 → UU (l1 ⊔ l2 ⊔ l3) reflecting-map-Eq-Rel B = Σ (A → B) reflects-Eq-Rel map-reflecting-map-Eq-Rel : {l3 : Level} {B : UU l3} → reflecting-map-Eq-Rel B → A → B map-reflecting-map-Eq-Rel = pr1 reflects-map-reflecting-map-Eq-Rel : {l3 : Level} {B : UU l3} (f : reflecting-map-Eq-Rel B) → reflects-Eq-Rel (map-reflecting-map-Eq-Rel f) reflects-map-reflecting-map-Eq-Rel = pr2 is-prop-reflects-Eq-Rel : {l3 : Level} (B : Set l3) (f : A → type-Set B) → is-prop (reflects-Eq-Rel f) is-prop-reflects-Eq-Rel B f = is-prop-Π' ( λ x → is-prop-Π' ( λ y → is-prop-function-type (is-set-type-Set B (f x) (f y)))) reflects-Eq-Rel-Prop : {l3 : Level} (B : Set l3) (f : A → type-Set B) → Prop (l1 ⊔ l2 ⊔ l3) pr1 (reflects-Eq-Rel-Prop B f) = reflects-Eq-Rel f pr2 (reflects-Eq-Rel-Prop B f) = is-prop-reflects-Eq-Rel B f
Properties
Any surjective and effective map reflects the equivalence relation
module _ {l1 l2 l3 : Level} {A : UU l1} (R : Eq-Rel l2 A) (B : Set l3) (q : A → type-Set B) where reflects-Eq-Rel-is-surjective-and-effective : is-surjective-and-effective R q → reflects-Eq-Rel R q reflects-Eq-Rel-is-surjective-and-effective E {x} {y} = map-inv-equiv (pr2 E x y) reflecting-map-Eq-Rel-is-surjective-and-effective : is-surjective-and-effective R q → reflecting-map-Eq-Rel R (type-Set B) pr1 (reflecting-map-Eq-Rel-is-surjective-and-effective E) = q pr2 (reflecting-map-Eq-Rel-is-surjective-and-effective E) = reflects-Eq-Rel-is-surjective-and-effective E
Characterizing the identity type of reflecting maps into sets
module _ {l1 l2 l3 : Level} {A : UU l1} (R : Eq-Rel l2 A) (B : Set l3) (f : reflecting-map-Eq-Rel R (type-Set B)) where htpy-reflecting-map-Eq-Rel : (g : reflecting-map-Eq-Rel R (type-Set B)) → UU (l1 ⊔ l3) htpy-reflecting-map-Eq-Rel g = pr1 f ~ pr1 g refl-htpy-reflecting-map-Eq-Rel : htpy-reflecting-map-Eq-Rel f refl-htpy-reflecting-map-Eq-Rel = refl-htpy htpy-eq-reflecting-map-Eq-Rel : (g : reflecting-map-Eq-Rel R (type-Set B)) → f = g → htpy-reflecting-map-Eq-Rel g htpy-eq-reflecting-map-Eq-Rel .f refl = refl-htpy-reflecting-map-Eq-Rel is-contr-total-htpy-reflecting-map-Eq-Rel : is-contr ( Σ (reflecting-map-Eq-Rel R (type-Set B)) htpy-reflecting-map-Eq-Rel) is-contr-total-htpy-reflecting-map-Eq-Rel = is-contr-total-Eq-subtype ( is-contr-total-htpy (pr1 f)) ( is-prop-reflects-Eq-Rel R B) ( pr1 f) ( refl-htpy) ( pr2 f) is-equiv-htpy-eq-reflecting-map-Eq-Rel : (g : reflecting-map-Eq-Rel R (type-Set B)) → is-equiv (htpy-eq-reflecting-map-Eq-Rel g) is-equiv-htpy-eq-reflecting-map-Eq-Rel = fundamental-theorem-id is-contr-total-htpy-reflecting-map-Eq-Rel htpy-eq-reflecting-map-Eq-Rel extensionality-reflecting-map-Eq-Rel : (g : reflecting-map-Eq-Rel R (type-Set B)) → (f = g) ≃ htpy-reflecting-map-Eq-Rel g pr1 (extensionality-reflecting-map-Eq-Rel g) = htpy-eq-reflecting-map-Eq-Rel g pr2 (extensionality-reflecting-map-Eq-Rel g) = is-equiv-htpy-eq-reflecting-map-Eq-Rel g eq-htpy-reflecting-map-Eq-Rel : (g : reflecting-map-Eq-Rel R (type-Set B)) → htpy-reflecting-map-Eq-Rel g → f = g eq-htpy-reflecting-map-Eq-Rel g = map-inv-is-equiv (is-equiv-htpy-eq-reflecting-map-Eq-Rel g)