Cauchy series of species of types
module species.cauchy-series-species-of-types where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functoriality-cartesian-product-types open import foundation.functoriality-dependent-pair-types open import foundation.functoriality-function-types open import foundation.universe-levels open import species.species-of-types
Idea
In classical mathematics, the Cauchy series of a species (of finite types) S
is the formal series in x
:
Σ (n : ℕ) (|S({1,...,n}| x^n / n!))
The categorified version of this series is :
Σ (F : 𝔽), S(F) × (F → X)
Remarks that we can generalized this to species of types with the following definition :
Σ (U : UU), S(U) × (U → X)
Definition
cauchy-series-species-types : {l1 l2 l3 : Level} → species-types l1 l2 → UU l3 → UU (lsuc l1 ⊔ l2 ⊔ l3) cauchy-series-species-types {l1} S X = Σ (UU l1) (λ U → S U × (U → X))
Properties
Equivalent species of types have equivalent Cauchy series
module _ {l1 l2 l3 l4 : Level} (S : species-types l1 l2) (T : species-types l1 l3) (f : (F : UU l1) → (S F ≃ T F)) (X : UU l4) where equiv-cauchy-series-equiv-species-types : cauchy-series-species-types S X ≃ cauchy-series-species-types T X equiv-cauchy-series-equiv-species-types = equiv-tot λ X → equiv-prod (f X) id-equiv
Cauchy series of types are equivalence invariant
module _ {l1 l2 l3 l4 : Level} (S : species-types l1 l2) (X : UU l3) (Y : UU l4) (e : X ≃ Y) where equiv-cauchy-series-species-types : cauchy-series-species-types S X ≃ cauchy-series-species-types S Y equiv-cauchy-series-species-types = equiv-tot (λ F → equiv-prod id-equiv (equiv-postcomp F e))