The universal property of propositional truncations
module foundation.universal-property-propositional-truncation where
Imports
open import foundation.equivalences open import foundation.function-extensionality open import foundation.functoriality-cartesian-product-types open import foundation.type-theoretic-principle-of-choice open import foundation.unit-type open import foundation.universal-property-dependent-pair-types open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.dependent-pair-types open import foundation-core.functions open import foundation-core.functoriality-dependent-function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.subtype-identity-principle open import foundation-core.universe-levels
Idea
A map f : A → P
into a proposition P
is said to satisfy the universal
property of the propositional truncation of A
, or is simply said to be a
propositional truncation of A
, if any map g : A → Q
into a proposition Q
extends uniquely along f
.
Definition
The condition of being a propositional truncation
precomp-Prop : { l1 l2 l3 : Level} {A : UU l1} (P : Prop l2) → (A → type-Prop P) → (Q : Prop l3) → (type-hom-Prop P Q) → (A → type-Prop Q) precomp-Prop P f Q g = g ∘ f is-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : Prop l2) → ( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) is-propositional-truncation l P f = (Q : Prop l) → is-equiv (precomp-Prop P f Q)
The universal property of the propositional truncation
universal-property-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : Prop l2) (f : A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-propositional-truncation l {A = A} P f = (Q : Prop l) (g : A → type-Prop Q) → is-contr (Σ (type-hom-Prop P Q) (λ h → (h ∘ f) ~ g))
Extension property of the propositional truncation
This is a simplified form of the universal properties, that works because we're mapping into propositions.
extension-property-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : Prop l2) → ( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) extension-property-propositional-truncation l {A = A} P f = (Q : Prop l) → (A → type-Prop Q) → (type-hom-Prop P Q)
The dependent universal property of the propositional truncation
dependent-universal-property-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} ( P : Prop l2) (f : A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) dependent-universal-property-propositional-truncation l {l1} {l2} {A} P f = ( Q : type-Prop P → Prop l) → is-equiv (precomp-Π f (type-Prop ∘ Q))
Properties
Being a propositional trunction is equivalent to satisfying the universal property of the propositional truncation
abstract universal-property-is-propositional-truncation : (l : Level) {l1 l2 : Level} {A : UU l1} (P : Prop l2) (f : A → type-Prop P) → is-propositional-truncation l P f → universal-property-propositional-truncation l P f universal-property-is-propositional-truncation l P f is-ptr-f Q g = is-contr-equiv' ( Σ (type-hom-Prop P Q) (λ h → (h ∘ f) = g)) ( equiv-tot (λ h → equiv-funext)) ( is-contr-map-is-equiv (is-ptr-f Q) g) abstract map-is-propositional-truncation : {l1 l2 l3 : Level} {A : UU l1} (P : Prop l2) (f : A → type-Prop P) → ({l : Level} → is-propositional-truncation l P f) → (Q : Prop l3) (g : A → type-Prop Q) → type-hom-Prop P Q map-is-propositional-truncation P f is-ptr-f Q g = pr1 ( center ( universal-property-is-propositional-truncation _ P f is-ptr-f Q g)) htpy-is-propositional-truncation : {l1 l2 l3 : Level} {A : UU l1} (P : Prop l2) (f : A → type-Prop P) → (is-ptr-f : {l : Level} → is-propositional-truncation l P f) → (Q : Prop l3) (g : A → type-Prop Q) → ((map-is-propositional-truncation P f is-ptr-f Q g) ∘ f) ~ g htpy-is-propositional-truncation P f is-ptr-f Q g = pr2 ( center ( universal-property-is-propositional-truncation _ P f is-ptr-f Q g)) abstract is-propositional-truncation-universal-property : (l : Level) {l1 l2 : Level} {A : UU l1} (P : Prop l2) (f : A → type-Prop P) → universal-property-propositional-truncation l P f → is-propositional-truncation l P f is-propositional-truncation-universal-property l P f up-f Q = is-equiv-is-contr-map ( λ g → is-contr-equiv ( Σ (type-hom-Prop P Q) (λ h → (h ∘ f) ~ g)) ( equiv-tot (λ h → equiv-funext)) ( up-f Q g))
Being a propositional truncation is equivalent to satisfying the extension property of propositional truncations
abstract is-propositional-truncation-extension-property : { l1 l2 : Level} {A : UU l1} (P : Prop l2) ( f : A → type-Prop P) → ( {l : Level} → extension-property-propositional-truncation l P f) → ( {l : Level} → is-propositional-truncation l P f) is-propositional-truncation-extension-property P f up-P {l} Q = is-equiv-is-prop ( is-prop-Π (λ x → is-prop-type-Prop Q)) ( is-prop-Π (λ x → is-prop-type-Prop Q)) ( up-P Q)
Uniqueness of propositional truncations
abstract is-equiv-is-ptruncation-is-ptruncation : {l1 l2 l3 : Level} {A : UU l1} (P : Prop l2) (P' : Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') (h : type-hom-Prop P P') (H : (h ∘ f) ~ f') → ({l : Level} → is-propositional-truncation l P f) → ({l : Level} → is-propositional-truncation l P' f') → is-equiv h is-equiv-is-ptruncation-is-ptruncation P P' f f' h H is-ptr-P is-ptr-P' = is-equiv-is-prop ( is-prop-type-Prop P) ( is-prop-type-Prop P') ( map-inv-is-equiv (is-ptr-P' P) f) abstract is-ptruncation-is-ptruncation-is-equiv : {l1 l2 l3 : Level} {A : UU l1} (P : Prop l2) (P' : Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') (h : type-hom-Prop P P') → is-equiv h → ({l : Level} → is-propositional-truncation l P f) → ({l : Level} → is-propositional-truncation l P' f') is-ptruncation-is-ptruncation-is-equiv P P' f f' h is-equiv-h is-ptr-f = is-propositional-truncation-extension-property P' f' ( λ R g → ( map-is-propositional-truncation P f is-ptr-f R g) ∘ ( map-inv-is-equiv is-equiv-h)) abstract is-ptruncation-is-equiv-is-ptruncation : {l1 l2 l3 : Level} {A : UU l1} (P : Prop l2) (P' : Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') (h : type-hom-Prop P P') → ({l : Level} → is-propositional-truncation l P' f') → is-equiv h → ({l : Level} → is-propositional-truncation l P f) is-ptruncation-is-equiv-is-ptruncation P P' f f' h is-ptr-f' is-equiv-h = is-propositional-truncation-extension-property P f ( λ R g → (map-is-propositional-truncation P' f' is-ptr-f' R g) ∘ h) abstract is-uniquely-unique-propositional-truncation : {l1 l2 l3 : Level} {A : UU l1} (P : Prop l2) (P' : Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') → ({l : Level} → is-propositional-truncation l P f) → ({l : Level} → is-propositional-truncation l P' f') → is-contr (Σ (type-equiv-Prop P P') (λ e → (map-equiv e ∘ f) ~ f')) is-uniquely-unique-propositional-truncation P P' f f' is-ptr-f is-ptr-f' = is-contr-total-Eq-subtype ( universal-property-is-propositional-truncation _ P f is-ptr-f P' f') ( is-property-is-equiv) ( map-is-propositional-truncation P f is-ptr-f P' f') ( htpy-is-propositional-truncation P f is-ptr-f P' f') ( is-equiv-is-ptruncation-is-ptruncation P P' f f' ( map-is-propositional-truncation P f is-ptr-f P' f') ( htpy-is-propositional-truncation P f is-ptr-f P' f') ( λ {l} → is-ptr-f) ( λ {l} → is-ptr-f'))
A map f : A → P
is a propositional truncation if and only if it satisfies the dependent universal property of the propositional truncation
abstract dependent-universal-property-is-propositional-truncation : { l1 l2 : Level} {A : UU l1} (P : Prop l2) (f : A → type-Prop P) → ( {l : Level} → is-propositional-truncation l P f) → ( {l : Level} → dependent-universal-property-propositional-truncation l P f) dependent-universal-property-is-propositional-truncation {l1} {l2} {A} P f is-ptr-f Q = is-fiberwise-equiv-is-equiv-map-Σ ( λ (g : A → type-Prop P) → (x : A) → type-Prop (Q (g x))) ( precomp f (type-Prop P)) ( λ h → precomp-Π f (λ p → type-Prop (Q (h p)))) ( is-ptr-f P) ( is-equiv-top-is-equiv-bottom-square ( map-inv-distributive-Π-Σ { C = λ (x : type-Prop P) (p : type-Prop P) → type-Prop (Q p)}) ( map-inv-distributive-Π-Σ { C = λ (x : A) (p : type-Prop P) → type-Prop (Q p)}) ( map-Σ ( λ (g : A → type-Prop P) → (x : A) → type-Prop (Q (g x))) ( precomp f (type-Prop P)) ( λ h → precomp-Π f (λ p → type-Prop (Q (h p))))) ( precomp f (Σ (type-Prop P) (λ p → type-Prop (Q p)))) ( ind-Σ (λ h h' → refl)) ( is-equiv-map-inv-distributive-Π-Σ) ( is-equiv-map-inv-distributive-Π-Σ) ( is-ptr-f (Σ-Prop P Q))) ( id {A = type-Prop P}) abstract is-propositional-truncation-dependent-universal-property : { l1 l2 : Level} {A : UU l1} (P : Prop l2) (f : A → type-Prop P) → ( {l : Level} → dependent-universal-property-propositional-truncation l P f) → ( {l : Level} → is-propositional-truncation l P f) is-propositional-truncation-dependent-universal-property P f dup-f Q = dup-f (λ p → Q)
Any map f : A → P
that has a section is a propositional truncation
abstract is-propositional-truncation-has-section : {l l1 l2 : Level} {A : UU l1} (P : Prop l2) (f : A → type-Prop P) → (g : type-Prop P → A) → is-propositional-truncation l P f is-propositional-truncation-has-section {A = A} P f g Q = is-equiv-is-prop ( is-prop-function-type (is-prop-type-Prop Q)) ( is-prop-function-type (is-prop-type-Prop Q)) ( λ h → h ∘ g)
If A
is a pointed type, then the map A → unit
is a propositional truncation
abstract is-propositional-truncation-terminal-map : { l l1 : Level} (A : UU l1) (a : A) → is-propositional-truncation l unit-Prop (terminal-map {A = A}) is-propositional-truncation-terminal-map A a = is-propositional-truncation-has-section ( unit-Prop) ( terminal-map) ( ind-unit a)
Any map between propositions is a propositional truncation if and only if it is an equivalence
abstract is-propositional-truncation-is-equiv : {l l1 l2 : Level} (P : Prop l1) (Q : Prop l2) {f : type-hom-Prop P Q} → is-equiv f → is-propositional-truncation l Q f is-propositional-truncation-is-equiv P Q {f} is-equiv-f R = is-equiv-precomp-is-equiv f is-equiv-f (type-Prop R) abstract is-propositional-truncation-map-equiv : { l1 l2 : Level} (P : Prop l1) (Q : Prop l2) (e : type-equiv-Prop P Q) → ( l : Level) → is-propositional-truncation l Q (map-equiv e) is-propositional-truncation-map-equiv P Q e l R = is-equiv-precomp-is-equiv (map-equiv e) (is-equiv-map-equiv e) (type-Prop R) abstract is-equiv-is-propositional-truncation : {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) {f : type-hom-Prop P Q} → ({l : Level} → is-propositional-truncation l Q f) → is-equiv f is-equiv-is-propositional-truncation P Q {f} H = is-equiv-is-equiv-precomp-Prop P Q f H
The identity map on a proposition is a propositional truncation
abstract is-propositional-truncation-id : { l1 : Level} (P : Prop l1) → ( l : Level) → is-propositional-truncation l P id is-propositional-truncation-id P l Q = is-equiv-id
A product of propositional truncations is a propositional truncation
abstract is-propositional-truncation-prod : {l1 l2 l3 l4 : Level} {A : UU l1} (P : Prop l2) (f : A → type-Prop P) {A' : UU l3} (P' : Prop l4) (f' : A' → type-Prop P') → ({l : Level} → is-propositional-truncation l P f) → ({l : Level} → is-propositional-truncation l P' f') → {l : Level} → is-propositional-truncation l (prod-Prop P P') (map-prod f f') is-propositional-truncation-prod P f P' f' is-ptr-f is-ptr-f' Q = is-equiv-top-is-equiv-bottom-square ( ev-pair) ( ev-pair) ( precomp (map-prod f f') (type-Prop Q)) ( λ h a a' → h (f a) (f' a')) ( refl-htpy) ( is-equiv-ev-pair) ( is-equiv-ev-pair) ( is-equiv-comp ( λ h a a' → h a (f' a')) ( λ h a p' → h (f a) p') ( is-ptr-f (pair (type-hom-Prop P' Q) (is-prop-type-hom-Prop P' Q))) ( is-equiv-map-Π ( λ a g a' → g (f' a')) ( λ a → is-ptr-f' Q)))