Powers of elements in commutative semirings

module commutative-algebra.powers-of-elements-commutative-semirings where
Imports
open import commutative-algebra.commutative-semirings

open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.identity-types
open import foundation.universe-levels

open import ring-theory.powers-of-elements-semirings

Idea

The power operation on a commutative semiring is the map n x ↦ xⁿ, which is defined by iteratively multiplying x with itself n times.

Definition

power-Commutative-Semiring :
  {l : Level} (A : Commutative-Semiring l) 
    type-Commutative-Semiring A  type-Commutative-Semiring A
power-Commutative-Semiring A = power-Semiring (semiring-Commutative-Semiring A)

Properties

xⁿ⁺¹ = xⁿx

module _
  {l : Level} (A : Commutative-Semiring l)
  where

  power-succ-Commutative-Semiring :
    (n : ) (x : type-Commutative-Semiring A) 
    power-Commutative-Semiring A (succ-ℕ n) x 
    mul-Commutative-Semiring A (power-Commutative-Semiring A n x) x
  power-succ-Commutative-Semiring =
    power-succ-Semiring (semiring-Commutative-Semiring A)

Powers by sums of natural numbers are products of powers

module _
  {l : Level} (A : Commutative-Semiring l)
  where

  power-add-Commutative-Semiring :
    (m n : ) {x : type-Commutative-Semiring A} 
    power-Commutative-Semiring A (m +ℕ n) x 
    mul-Commutative-Semiring A
      ( power-Commutative-Semiring A m x)
      ( power-Commutative-Semiring A n x)
  power-add-Commutative-Semiring =
    power-add-Semiring (semiring-Commutative-Semiring A)

If x commutes with y, then powers distribute over the product of x and y.

module _
  {l : Level} (A : Commutative-Semiring l)
  where

  distributive-power-mul-Commutative-Semiring :
    (n : ) (x y : type-Commutative-Semiring A) 
    power-Commutative-Semiring A n (mul-Commutative-Semiring A x y) 
    mul-Commutative-Semiring A
      ( power-Commutative-Semiring A n x)
      ( power-Commutative-Semiring A n y)
  distributive-power-mul-Commutative-Semiring n x y =
    distributive-power-mul-Semiring
      ( semiring-Commutative-Semiring A)
      ( n)
      ( commutative-mul-Commutative-Semiring A x y)