Negation
module foundation.negation where
Imports
open import foundation-core.negation public open import foundation-core.dependent-pair-types open import foundation-core.empty-types open import foundation-core.equivalences open import foundation-core.logical-equivalences open import foundation-core.propositions open import foundation-core.universe-levels
Idea
The Curry-Howard interpretation of negation in type theory is the interpretation
of the proposition P ⇒ ⊥
using propositions as types. Thus, the negation of a
type A
is the type A → empty
.
Properties
The negation of a type is a proposition
is-prop-neg : {l : Level} {A : UU l} → is-prop (¬ A) is-prop-neg {A = A} = is-prop-function-type is-prop-empty neg-Prop' : {l1 : Level} → UU l1 → Prop l1 pr1 (neg-Prop' A) = ¬ A pr2 (neg-Prop' A) = is-prop-neg neg-Prop : {l1 : Level} → Prop l1 → Prop l1 neg-Prop P = neg-Prop' (type-Prop P)
Reductio ad absurdum
reductio-ad-absurdum : {l1 l2 : Level} {P : UU l1} {Q : UU l2} → P → ¬ P → Q reductio-ad-absurdum p np = ex-falso (np p)
Equivalent types have equivalent negations
equiv-neg : {l1 l2 : Level} {X : UU l1} {Y : UU l2} → (X ≃ Y) → (¬ X ≃ ¬ Y) equiv-neg {l1} {l2} {X} {Y} e = equiv-iff' ( neg-Prop' X) ( neg-Prop' Y) ( pair (map-neg (map-inv-equiv e)) (map-neg (map-equiv e)))
Negation has no fixed points
no-fixed-points-neg : {l : Level} (A : UU l) → ¬ (A ↔ (¬ A)) no-fixed-points-neg A (pair f g) = ( λ (h : ¬ A) → h (g h)) (λ (a : A) → f a a)
abstract no-fixed-points-neg-Prop : {l1 : Level} (P : Prop l1) → ¬ (P ⇔ neg-Prop P) no-fixed-points-neg-Prop P = no-fixed-points-neg (type-Prop P)