The precategory of concrete groups
module group-theory.precategory-of-concrete-groups where
Imports
open import category-theory.large-precategories open import foundation.universe-levels open import group-theory.concrete-groups open import group-theory.homomorphisms-concrete-groups
Definitions
The large precategory of concrete groups
Concrete-Group-Large-Precategory : Large-Precategory lsuc (λ l1 l2 → l1 ⊔ l2) obj-Large-Precategory Concrete-Group-Large-Precategory = Concrete-Group hom-Large-Precategory Concrete-Group-Large-Precategory = hom-set-Concrete-Group comp-hom-Large-Precategory Concrete-Group-Large-Precategory {X = G} {Y = H} {Z = K} = comp-hom-Concrete-Group G H K id-hom-Large-Precategory Concrete-Group-Large-Precategory {X = G} = id-hom-Concrete-Group G associative-comp-hom-Large-Precategory Concrete-Group-Large-Precategory {X = G} {Y = H} {Z = K} {W = L} h g f = eq-htpy-hom-Concrete-Group G L _ _ ( associative-comp-hom-Concrete-Group G H K L h g f) left-unit-law-comp-hom-Large-Precategory Concrete-Group-Large-Precategory {X = G} {Y = H} f = eq-htpy-hom-Concrete-Group G H _ _ ( left-unit-law-comp-hom-Concrete-Group G H f) right-unit-law-comp-hom-Large-Precategory Concrete-Group-Large-Precategory {X = G} {Y = H} f = eq-htpy-hom-Concrete-Group G H _ _ ( right-unit-law-comp-hom-Concrete-Group G H f)