Unordered tuples of types
module foundation.unordered-tuples-of-types where
Imports
open import elementary-number-theory.natural-numbers open import foundation.structure-identity-principle open import foundation.univalence open import foundation.unordered-tuples open import foundation-core.contractible-types open import foundation-core.dependent-pair-types open import foundation-core.equivalences open import foundation-core.fundamental-theorem-of-identity-types open import foundation-core.identity-types open import foundation-core.universe-levels open import univalent-combinatorics.finite-types
Idea
An unordered tuple of types is an unordered tuple of elements in a universe
Definitions
Unordered tuple of types
unordered-tuple-types : (l : Level) → ℕ → UU (lsuc l) unordered-tuple-types l n = unordered-tuple n (UU l)
Equivalences of unordered pairs of types
equiv-unordered-tuple-types : {l1 l2 : Level} (n : ℕ) → unordered-tuple-types l1 n → unordered-tuple-types l2 n → UU (l1 ⊔ l2) equiv-unordered-tuple-types n A B = Σ ( type-unordered-tuple n A ≃ type-unordered-tuple n B) ( λ e → (i : type-unordered-tuple n A) → element-unordered-tuple n A i ≃ element-unordered-tuple n B (map-equiv e i)) module _ {l1 l2 : Level} (n : ℕ) (A : unordered-tuple-types l1 n) (B : unordered-tuple-types l2 n) (e : equiv-unordered-tuple-types n A B) where equiv-type-equiv-unordered-tuple-types : type-unordered-tuple n A ≃ type-unordered-tuple n B equiv-type-equiv-unordered-tuple-types = pr1 e map-equiv-type-equiv-unordered-tuple-types : type-unordered-tuple n A → type-unordered-tuple n B map-equiv-type-equiv-unordered-tuple-types = map-equiv equiv-type-equiv-unordered-tuple-types equiv-element-equiv-unordered-tuple-types : (i : type-unordered-tuple n A) → ( element-unordered-tuple n A i) ≃ ( element-unordered-tuple n B ( map-equiv-type-equiv-unordered-tuple-types i)) equiv-element-equiv-unordered-tuple-types = pr2 e
Properties
Univalence for unordered pairs of types
module _ {l : Level} {n : ℕ} (A : unordered-tuple-types l n) where id-equiv-unordered-tuple-types : equiv-unordered-tuple-types n A A pr1 id-equiv-unordered-tuple-types = id-equiv pr2 id-equiv-unordered-tuple-types i = id-equiv equiv-eq-unordered-tuple-types : (B : unordered-tuple-types l n) → A = B → equiv-unordered-tuple-types n A B equiv-eq-unordered-tuple-types .A refl = id-equiv-unordered-tuple-types is-contr-total-equiv-unordered-tuple-types : is-contr (Σ (unordered-tuple-types l n) (equiv-unordered-tuple-types n A)) is-contr-total-equiv-unordered-tuple-types = is-contr-total-Eq-structure ( λ I B e → (i : type-unordered-tuple n A) → element-unordered-tuple n A i ≃ B (map-equiv e i)) ( is-contr-total-equiv-UU-Fin {k = n} (type-unordered-tuple-UU-Fin n A)) ( pair (type-unordered-tuple-UU-Fin n A) id-equiv) ( is-contr-total-equiv-fam (element-unordered-tuple n A)) is-equiv-equiv-eq-unordered-tuple-types : (B : unordered-tuple-types l n) → is-equiv (equiv-eq-unordered-tuple-types B) is-equiv-equiv-eq-unordered-tuple-types = fundamental-theorem-id is-contr-total-equiv-unordered-tuple-types equiv-eq-unordered-tuple-types extensionality-unordered-tuple-types : (B : unordered-tuple-types l n) → (A = B) ≃ equiv-unordered-tuple-types n A B pr1 (extensionality-unordered-tuple-types B) = equiv-eq-unordered-tuple-types B pr2 (extensionality-unordered-tuple-types B) = is-equiv-equiv-eq-unordered-tuple-types B