Decidability of dependent function types
module foundation.decidable-dependent-function-types where
Imports
open import foundation.decidable-types open import foundation.functoriality-dependent-function-types open import foundation.maybe open import foundation.universal-property-coproduct-types open import foundation.universal-property-maybe open import foundation-core.coproduct-types open import foundation-core.equivalences open import foundation-core.universe-levels
Idea
We describe conditions under which dependent products are decidable.
Decidablitilty of dependent products over coproducts
is-decidable-Π-coprod : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : A + B → UU l3} → is-decidable ((a : A) → C (inl a)) → is-decidable ((b : B) → C (inr b)) → is-decidable ((x : A + B) → C x) is-decidable-Π-coprod {C = C} dA dB = is-decidable-equiv ( equiv-dependent-universal-property-coprod C) ( is-decidable-prod dA dB)
Decidability of dependent products over Maybe
is-decidable-Π-Maybe : {l1 l2 : Level} {A : UU l1} {B : Maybe A → UU l2} → is-decidable ((x : A) → B (unit-Maybe x)) → is-decidable (B exception-Maybe) → is-decidable ((x : Maybe A) → B x) is-decidable-Π-Maybe {B = B} du de = is-decidable-equiv ( equiv-dependent-universal-property-Maybe B) ( is-decidable-prod du de)
Decidability of dependent products over an equivalence
is-decidable-Π-equiv : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} {D : B → UU l4} (e : A ≃ B) (f : (x : A) → C x ≃ D (map-equiv e x)) → is-decidable ((x : A) → C x) → is-decidable ((y : B) → D y) is-decidable-Π-equiv {D = D} e f = is-decidable-equiv' (equiv-Π D e f) is-decidable-Π-equiv' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} {D : B → UU l4} (e : A ≃ B) (f : (x : A) → C x ≃ D (map-equiv e x)) → is-decidable ((y : B) → D y) → is-decidable ((x : A) → C x) is-decidable-Π-equiv' {D = D} e f = is-decidable-equiv (equiv-Π D e f)