Exponential of Cauchy series of species of types
module species.exponentials-cauchy-series-of-types where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functoriality-dependent-pair-types open import foundation.type-arithmetic-cartesian-product-types open import foundation.unit-type open import foundation.universe-levels open import species.cauchy-composition-species-of-types open import species.cauchy-exponentials-species-of-types open import species.cauchy-series-species-of-types open import species.composition-cauchy-series-species-of-types open import species.species-of-types
Definition
module _ {l1 l2 l3 : Level} (S : species-types l1 l2) (X : UU l3) where exponential-cauchy-series-species-types : UU (lsuc l1 ⊔ l2 ⊔ l3) exponential-cauchy-series-species-types = Σ ( UU l1) ( λ F → F → (Σ ( UU l1) (λ U → S U × (U → X))))
Properties
The exponential of a Cauchy series as a composition
equiv-exponential-cauchy-series-composition-unit-species-types : composition-cauchy-series-species-types (λ _ → unit) S X ≃ exponential-cauchy-series-species-types equiv-exponential-cauchy-series-composition-unit-species-types = equiv-tot λ F → left-unit-law-prod-is-contr is-contr-unit
The Cauchy series associated to the Cauchy exponential of S
is equal to the exponential of its Cauchy series
equiv-cauchy-series-cauchy-exponential-species-types : cauchy-series-species-types (cauchy-exponential-species-types S) X ≃ exponential-cauchy-series-species-types equiv-cauchy-series-cauchy-exponential-species-types = ( equiv-exponential-cauchy-series-composition-unit-species-types) ∘e ( ( equiv-cauchy-series-composition-species-types (λ _ → unit) S X) ∘e ( equiv-cauchy-series-equiv-species-types ( cauchy-exponential-species-types S) ( cauchy-composition-species-types (λ _ → unit) S) ( λ F → inv-equiv ( equiv-cauchy-exponential-composition-unit-species-types S F)) ( X)))