Reflecting maps of undirected graphs
module graph-theory.reflecting-maps-undirected-graphs where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.symmetric-identity-types open import foundation.unit-type open import foundation.universe-levels open import foundation.unordered-pairs open import graph-theory.undirected-graphs
Idea
A reflecting map from an undirected graph (V , E)
into a type X
consists of
a map fV : V → X
and a map
fE : (v : unordered-pair V) → E v → symmetric-Id (map-unordered-pair fV v).
In other words, it maps edges into the symmetric identity type.
Definitions
Reflecting maps of undirected graphs
reflecting-map-Undirected-Graph : {l1 l2 l3 : Level} (G : Undirected-Graph l1 l2) (X : UU l3) → UU (lsuc lzero ⊔ l1 ⊔ l2 ⊔ l3) reflecting-map-Undirected-Graph G X = Σ ( vertex-Undirected-Graph G → X) ( λ f → (v : unordered-pair-vertices-Undirected-Graph G) → edge-Undirected-Graph G v → symmetric-Id (map-unordered-pair f v)) module _ {l1 l2 l3 : Level} (G : Undirected-Graph l1 l2) {X : UU l3} (f : reflecting-map-Undirected-Graph G X) where vertex-reflecting-map-Undirected-Graph : vertex-Undirected-Graph G → X vertex-reflecting-map-Undirected-Graph = pr1 f unordered-pair-vertices-reflecting-map-Undirected-Graph : unordered-pair-vertices-Undirected-Graph G → unordered-pair X unordered-pair-vertices-reflecting-map-Undirected-Graph = map-unordered-pair vertex-reflecting-map-Undirected-Graph edge-reflecting-map-Undirected-Graph : (v : unordered-pair-vertices-Undirected-Graph G) → edge-Undirected-Graph G v → symmetric-Id (unordered-pair-vertices-reflecting-map-Undirected-Graph v) edge-reflecting-map-Undirected-Graph = pr2 f
Terminal reflecting maps
terminal-reflecting-map-Undirected-Graph : {l1 l2 : Level} (G : Undirected-Graph l1 l2) → reflecting-map-Undirected-Graph G unit pr1 (terminal-reflecting-map-Undirected-Graph G) x = star pr1 (pr2 (terminal-reflecting-map-Undirected-Graph G) p e) = star pr2 (pr2 (terminal-reflecting-map-Undirected-Graph G) p e) x = eq-is-contr is-contr-unit