Cartesian product types
module foundation.cartesian-product-types where
Imports
open import foundation-core.cartesian-product-types public open import foundation.subuniverses open import foundation-core.universe-levels
Definitions
Subuniverses closed under cartesian product types
is-closed-under-products-subuniverses : {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) (Q : subuniverse l3 l4) (R : subuniverse (l1 ⊔ l3) l5) → UU (lsuc l1 ⊔ l2 ⊔ lsuc l3 ⊔ l4 ⊔ l5) is-closed-under-products-subuniverses {l1} {l2} {l3} P Q R = {X : UU l1} {Y : UU l3} → is-in-subuniverse P X → is-in-subuniverse Q Y → is-in-subuniverse R (X × Y) is-closed-under-products-subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) → UU (lsuc l1 ⊔ l2) is-closed-under-products-subuniverse P = is-closed-under-products-subuniverses P P P