The commutative ring of integers
module elementary-number-theory.commutative-ring-of-integers where
Imports
open import commutative-algebra.commutative-rings open import elementary-number-theory.addition-integers open import elementary-number-theory.group-of-integers open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integers open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.abelian-groups open import ring-theory.rings
Definition
ℤ-Ab : Ab lzero pr1 ℤ-Ab = ℤ-Group pr2 ℤ-Ab = commutative-add-ℤ ℤ-Ring : Ring lzero pr1 ℤ-Ring = ℤ-Ab pr1 (pr1 (pr2 ℤ-Ring)) = mul-ℤ pr2 (pr1 (pr2 ℤ-Ring)) = associative-mul-ℤ pr1 (pr1 (pr2 (pr2 ℤ-Ring))) = one-ℤ pr1 (pr2 (pr1 (pr2 (pr2 ℤ-Ring)))) = left-unit-law-mul-ℤ pr2 (pr2 (pr1 (pr2 (pr2 ℤ-Ring)))) = right-unit-law-mul-ℤ pr1 (pr2 (pr2 (pr2 ℤ-Ring))) = left-distributive-mul-add-ℤ pr2 (pr2 (pr2 (pr2 ℤ-Ring))) = right-distributive-mul-add-ℤ ℤ-Commutative-Ring : Commutative-Ring lzero pr1 ℤ-Commutative-Ring = ℤ-Ring pr2 ℤ-Commutative-Ring = commutative-mul-ℤ