Connected components of types
module foundation.connected-components where
Imports
open import foundation.0-connected-types open import foundation.propositional-truncations open import foundation.propositions open import foundation-core.dependent-pair-types open import foundation-core.equality-dependent-pair-types open import foundation-core.identity-types open import foundation-core.truncated-types open import foundation-core.truncation-levels open import foundation-core.universe-levels open import higher-group-theory.higher-groups open import structured-types.pointed-types
Idea
The connected component of a type A
at an element a : A
is the type of all
x : A
that are merely equal to a
.
Definition
module _ {l : Level} (A : UU l) (a : A) where connected-component : UU l connected-component = Σ A (λ x → type-trunc-Prop (x = a)) point-connected-component : connected-component pr1 point-connected-component = a pr2 point-connected-component = unit-trunc-Prop refl connected-component-Pointed-Type : Pointed-Type l pr1 connected-component-Pointed-Type = connected-component pr2 connected-component-Pointed-Type = point-connected-component value-connected-component : connected-component → A value-connected-component X = pr1 X abstract mere-equality-connected-component : (X : connected-component) → type-trunc-Prop (value-connected-component X = a) mere-equality-connected-component X = pr2 X
Properties
Connected components are 0-connected
abstract is-0-connected-connected-component : {l : Level} (A : UU l) (a : A) → is-0-connected (connected-component A a) is-0-connected-connected-component A a = is-0-connected-mere-eq ( pair a (unit-trunc-Prop refl)) ( λ (pair x p) → apply-universal-property-trunc-Prop ( p) ( trunc-Prop (pair a (unit-trunc-Prop refl) = pair x p)) ( λ p' → unit-trunc-Prop ( eq-pair-Σ ( inv p') ( all-elements-equal-type-trunc-Prop _ p)))) connected-component-∞-Group : {l : Level} (A : UU l) (a : A) → ∞-Group l pr1 (connected-component-∞-Group A a) = connected-component-Pointed-Type A a pr2 (connected-component-∞-Group A a) = is-0-connected-connected-component A a
If A
is k+1
-truncated, then the connected component of a
in A
is k+1
-truncated
is-trunc-connected-component : {l : Level} {k : 𝕋} (A : UU l) (a : A) → is-trunc (succ-𝕋 k) A → is-trunc (succ-𝕋 k) (connected-component A a) is-trunc-connected-component {l} {k} A a H = is-trunc-Σ H (λ x → is-trunc-is-prop k is-prop-type-trunc-Prop)