The precategory of functors and natural transformations between two fixed precategories
module category-theory.precategory-of-functors where
Imports
open import category-theory.functors-precategories open import category-theory.natural-transformations-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.universe-levels
Precategory of functors
Functors between precategories and natural transformations between them introduce a new precategory whose identity map and composition structure are inherited pointwise from the codomain precategory.
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) where functor-precategory-Precategory : Precategory (l1 ⊔ l2 ⊔ l3 ⊔ l4) (l1 ⊔ l2 ⊔ l4) pr1 functor-precategory-Precategory = functor-Precategory C D pr1 (pr2 functor-precategory-Precategory) F G = natural-transformation-Precategory-Set C D F G pr1 (pr2 (pr2 functor-precategory-Precategory)) = ( λ {F} {G} {H} → comp-natural-transformation-Precategory C D F G H) , ( λ {F} {G} {H} {I} h g f → associative-comp-natural-transformation-Precategory C D {F} {G} {H} {I} f g h) pr2 (pr2 (pr2 functor-precategory-Precategory)) = (id-natural-transformation-Precategory C D) , ( λ {F} {G} → left-unit-law-comp-natural-transformation-Precategory C D {F} {G}) , ( λ {F} {G} → right-unit-law-comp-natural-transformation-Precategory C D {F} {G})