module univalent-combinatorics.sigma-decompositions where
Imports
open import foundation.sigma-decompositions public
open import foundation.cartesian-product-types
open import foundation.embeddings
open import foundation.equivalences
open import foundation.functoriality-dependent-function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.inhabited-types
open import foundation.propositions
open import foundation.relaxed-sigma-decompositions
open import foundation.subtypes
open import foundation.surjective-maps
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.type-theoretic-principle-of-choice
open import foundation.universe-levels
open import univalent-combinatorics.decidable-equivalence-relations
open import univalent-combinatorics.dependent-pair-types
open import univalent-combinatorics.finite-types
open import univalent-combinatorics.inhabited-finite-types
open import univalent-combinatorics.type-duality
Σ-Decomposition-𝔽 :
{l : Level} → (l1 l2 : Level) → 𝔽 l → UU (l ⊔ lsuc l1 ⊔ lsuc l2)
Σ-Decomposition-𝔽 l1 l2 A =
Σ ( 𝔽 l1)
( λ X →
Σ ( type-𝔽 X → Inhabited-𝔽 l2)
( λ Y → type-𝔽 A ≃ (Σ (type-𝔽 X) (λ x → type-Inhabited-𝔽 (Y x)))))
module _
{l l1 l2 : Level} (A : 𝔽 l) (D : Σ-Decomposition-𝔽 l1 l2 A)
where
finite-indexing-type-Σ-Decomposition-𝔽 : 𝔽 l1
finite-indexing-type-Σ-Decomposition-𝔽 = pr1 D
indexing-type-Σ-Decomposition-𝔽 : UU l1
indexing-type-Σ-Decomposition-𝔽 =
type-𝔽 finite-indexing-type-Σ-Decomposition-𝔽
is-finite-indexing-type-Σ-Decomposition-𝔽 :
is-finite (indexing-type-Σ-Decomposition-𝔽)
is-finite-indexing-type-Σ-Decomposition-𝔽 =
is-finite-type-𝔽 finite-indexing-type-Σ-Decomposition-𝔽
finite-inhabited-cotype-Σ-Decomposition-𝔽 :
Fam-Inhabited-Types-𝔽 l2 finite-indexing-type-Σ-Decomposition-𝔽
finite-inhabited-cotype-Σ-Decomposition-𝔽 = pr1 (pr2 D)
finite-cotype-Σ-Decomposition-𝔽 :
type-𝔽 finite-indexing-type-Σ-Decomposition-𝔽 → 𝔽 l2
finite-cotype-Σ-Decomposition-𝔽 =
finite-type-Fam-Inhabited-Types-𝔽
finite-indexing-type-Σ-Decomposition-𝔽
finite-inhabited-cotype-Σ-Decomposition-𝔽
cotype-Σ-Decomposition-𝔽 :
type-𝔽 finite-indexing-type-Σ-Decomposition-𝔽 → UU l2
cotype-Σ-Decomposition-𝔽 x = type-𝔽 (finite-cotype-Σ-Decomposition-𝔽 x)
is-finite-cotype-Σ-Decomposition-𝔽 :
(x : type-𝔽 finite-indexing-type-Σ-Decomposition-𝔽) →
is-finite (cotype-Σ-Decomposition-𝔽 x)
is-finite-cotype-Σ-Decomposition-𝔽 x =
is-finite-type-𝔽 (finite-cotype-Σ-Decomposition-𝔽 x)
is-inhabited-cotype-Σ-Decomposition-𝔽 :
(x : type-𝔽 finite-indexing-type-Σ-Decomposition-𝔽) →
is-inhabited (cotype-Σ-Decomposition-𝔽 x)
is-inhabited-cotype-Σ-Decomposition-𝔽 x =
is-inhabited-type-Inhabited-𝔽
( finite-inhabited-cotype-Σ-Decomposition-𝔽 x)
inhabited-cotype-Σ-Decomposition-𝔽 :
Fam-Inhabited-Types l2 indexing-type-Σ-Decomposition-𝔽
pr1 (inhabited-cotype-Σ-Decomposition-𝔽 x) =
cotype-Σ-Decomposition-𝔽 x
pr2 (inhabited-cotype-Σ-Decomposition-𝔽 x) =
is-inhabited-cotype-Σ-Decomposition-𝔽 x
matching-correspondence-Σ-Decomposition-𝔽 :
type-𝔽 A ≃ Σ indexing-type-Σ-Decomposition-𝔽 cotype-Σ-Decomposition-𝔽
matching-correspondence-Σ-Decomposition-𝔽 = pr2 (pr2 D)
map-matching-correspondence-Σ-Decomposition-𝔽 :
type-𝔽 A → Σ indexing-type-Σ-Decomposition-𝔽 cotype-Σ-Decomposition-𝔽
map-matching-correspondence-Σ-Decomposition-𝔽 =
map-equiv matching-correspondence-Σ-Decomposition-𝔽
Σ-Decomposition-Σ-Decomposition-𝔽 :
Σ-Decomposition l1 l2 (type-𝔽 A)
pr1 Σ-Decomposition-Σ-Decomposition-𝔽 =
indexing-type-Σ-Decomposition-𝔽
pr1 (pr2 Σ-Decomposition-Σ-Decomposition-𝔽) =
inhabited-cotype-Σ-Decomposition-𝔽
pr2 (pr2 Σ-Decomposition-Σ-Decomposition-𝔽) =
matching-correspondence-Σ-Decomposition-𝔽
fibered-Σ-Decomposition-𝔽 :
{l1 : Level} (l2 l3 l4 l5 : Level) (A : 𝔽 l1) →
UU (l1 ⊔ lsuc l2 ⊔ lsuc l3 ⊔ lsuc l4 ⊔ lsuc l5)
fibered-Σ-Decomposition-𝔽 l2 l3 l4 l5 A =
Σ ( Σ-Decomposition-𝔽 l2 l3 A)
( λ D →
Σ-Decomposition-𝔽 l4 l5 (finite-indexing-type-Σ-Decomposition-𝔽 A D))
displayed-Σ-Decomposition-𝔽 :
{l1 : Level} (l2 l3 l4 l5 : Level) (A : 𝔽 l1) →
UU (l1 ⊔ lsuc l2 ⊔ lsuc l3 ⊔ lsuc l4 ⊔ lsuc l5)
displayed-Σ-Decomposition-𝔽 l2 l3 l4 l5 A =
( Σ ( Σ-Decomposition-𝔽 l2 l3 A)
( λ D → (u : indexing-type-Σ-Decomposition-𝔽 A D) →
Σ-Decomposition-𝔽 l4 l5 (finite-cotype-Σ-Decomposition-𝔽 A D u)))
equiv-Relaxed-Σ-Decomposition-Σ-Decomposition-𝔽 :
{l1 l2 l3 : Level} (A : 𝔽 l1) →
Σ-Decomposition-𝔽 l2 l3 A ≃
Σ ( Relaxed-Σ-Decomposition l2 l3 (type-𝔽 A))
( λ D →
is-finite (indexing-type-Relaxed-Σ-Decomposition D) ×
((x : indexing-type-Relaxed-Σ-Decomposition D) →
is-finite (cotype-Relaxed-Σ-Decomposition D x) ×
is-inhabited (cotype-Relaxed-Σ-Decomposition D x)))
pr1 ( equiv-Relaxed-Σ-Decomposition-Σ-Decomposition-𝔽 A) D =
( indexing-type-Σ-Decomposition-𝔽 A D ,
( cotype-Σ-Decomposition-𝔽 A D) ,
( matching-correspondence-Σ-Decomposition-𝔽 A D)) ,
( is-finite-indexing-type-Σ-Decomposition-𝔽 A D) ,
( λ x → is-finite-cotype-Σ-Decomposition-𝔽 A D x ,
is-inhabited-cotype-Σ-Decomposition-𝔽 A D x)
pr2 ( equiv-Relaxed-Σ-Decomposition-Σ-Decomposition-𝔽 A) =
is-equiv-has-inverse
( λ X →
( pr1 (pr1 X) , pr1 (pr2 X)) ,
( ( λ x →
( pr1 (pr2 (pr1 X)) x , pr1 (pr2 (pr2 X) x)) ,
( pr2 (pr2 (pr2 X) x))) ,
( pr2 (pr2 (pr1 X)))))
( refl-htpy)
( refl-htpy)
module _
{l : Level} (A : 𝔽 l)
where
equiv-finite-surjection-Σ-Decomposition-𝔽 :
Σ-Decomposition-𝔽 l l A ≃ Σ (𝔽 l) (λ B → (type-𝔽 A) ↠ (type-𝔽 B))
equiv-finite-surjection-Σ-Decomposition-𝔽 =
equiv-Σ
( λ B → type-𝔽 A ↠ type-𝔽 B)
( id-equiv)
( λ X → inv-equiv (equiv-surjection-𝔽-family-finite-inhabited-type A X))
equiv-Decidable-Equivalence-Relation-𝔽-Σ-Decomposition-𝔽 :
Σ-Decomposition-𝔽 l l A ≃
Decidable-Equivalence-Relation-𝔽 l A
equiv-Decidable-Equivalence-Relation-𝔽-Σ-Decomposition-𝔽 =
inv-equiv (equiv-Surjection-𝔽-Decidable-Equivalence-Relation-𝔽 A) ∘e
equiv-finite-surjection-Σ-Decomposition-𝔽
is-finite-Σ-Decomposition-𝔽 :
is-finite (Σ-Decomposition-𝔽 l l A)
is-finite-Σ-Decomposition-𝔽 =
is-finite-equiv
( inv-equiv equiv-Decidable-Equivalence-Relation-𝔽-Σ-Decomposition-𝔽)
( is-finite-Decidable-Equivalence-Relation-𝔽 A)
module _
{l1 l2 l3 : Level} (A : 𝔽 l1)
where
is-finite-Σ-Decomposition :
subtype (l2 ⊔ l3) (Σ-Decomposition l2 l3 (type-𝔽 A))
is-finite-Σ-Decomposition D =
Σ-Prop
( is-finite-Prop (indexing-type-Σ-Decomposition D))
( λ _ →
Π-Prop
( indexing-type-Σ-Decomposition D)
( λ x → is-finite-Prop (cotype-Σ-Decomposition D x)))
map-Σ-Decomposition-𝔽-subtype-is-finite :
type-subtype is-finite-Σ-Decomposition → Σ-Decomposition-𝔽 l2 l3 A
map-Σ-Decomposition-𝔽-subtype-is-finite ((X , (Y , e)) , (fin-X , fin-Y)) =
( ( X , fin-X) ,
( ( λ x →
( (type-Inhabited-Type (Y x)) , (fin-Y x)) ,
(is-inhabited-type-Inhabited-Type (Y x))) ,
e))
map-inv-Σ-Decomposition-𝔽-subtype-is-finite :
Σ-Decomposition-𝔽 l2 l3 A → type-subtype is-finite-Σ-Decomposition
map-inv-Σ-Decomposition-𝔽-subtype-is-finite ((X , fin-X) , (Y , e)) =
( ( X ,
( ( λ x → inhabited-type-Inhabited-𝔽 (Y x)) ,
( e))) ,
(fin-X , (λ x → is-finite-Inhabited-𝔽 (Y x))))
equiv-Σ-Decomposition-𝔽-is-finite-subtype :
type-subtype is-finite-Σ-Decomposition ≃ Σ-Decomposition-𝔽 l2 l3 A
pr1 (equiv-Σ-Decomposition-𝔽-is-finite-subtype) =
map-Σ-Decomposition-𝔽-subtype-is-finite
pr2 (equiv-Σ-Decomposition-𝔽-is-finite-subtype) =
is-equiv-has-inverse
map-inv-Σ-Decomposition-𝔽-subtype-is-finite
refl-htpy
refl-htpy
is-emb-Σ-Decomposition-Σ-Decomposition-𝔽 :
is-emb (Σ-Decomposition-Σ-Decomposition-𝔽 {l1} {l2} {l3} A)
is-emb-Σ-Decomposition-Σ-Decomposition-𝔽 =
is-emb-triangle-is-equiv
( Σ-Decomposition-Σ-Decomposition-𝔽 A)
( pr1)
( map-inv-equiv ( equiv-Σ-Decomposition-𝔽-is-finite-subtype))
( refl-htpy)
( is-equiv-map-inv-equiv
( equiv-Σ-Decomposition-𝔽-is-finite-subtype))
( is-emb-inclusion-subtype (is-finite-Σ-Decomposition))
emb-Σ-Decomposition-Σ-Decomposition-𝔽 :
Σ-Decomposition-𝔽 l2 l3 A ↪ Σ-Decomposition l2 l3 (type-𝔽 A)
pr1 (emb-Σ-Decomposition-Σ-Decomposition-𝔽) =
Σ-Decomposition-Σ-Decomposition-𝔽 A
pr2 (emb-Σ-Decomposition-Σ-Decomposition-𝔽) =
is-emb-Σ-Decomposition-Σ-Decomposition-𝔽
equiv-Σ-Decomposition-𝔽 :
{l1 l2 l3 l4 l5 : Level} (A : 𝔽 l1)
(X : Σ-Decomposition-𝔽 l2 l3 A) (Y : Σ-Decomposition-𝔽 l4 l5 A) →
UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5)
equiv-Σ-Decomposition-𝔽 A X Y =
equiv-Σ-Decomposition
( Σ-Decomposition-Σ-Decomposition-𝔽 A X)
( Σ-Decomposition-Σ-Decomposition-𝔽 A Y)
module _
{l1 l2 l3 : Level} (A : 𝔽 l1)
(X : Σ-Decomposition-𝔽 l2 l3 A) (Y : Σ-Decomposition-𝔽 l2 l3 A)
where
extensionality-Σ-Decomposition-𝔽 :
(X = Y) ≃ equiv-Σ-Decomposition-𝔽 A X Y
extensionality-Σ-Decomposition-𝔽 =
extensionality-Σ-Decomposition
( Σ-Decomposition-Σ-Decomposition-𝔽 A X)
( Σ-Decomposition-Σ-Decomposition-𝔽 A Y) ∘e
equiv-ap-emb (emb-Σ-Decomposition-Σ-Decomposition-𝔽 A)
eq-equiv-Σ-Decomposition-𝔽 :
equiv-Σ-Decomposition-𝔽 A X Y → (X = Y)
eq-equiv-Σ-Decomposition-𝔽 =
map-inv-equiv (extensionality-Σ-Decomposition-𝔽)
module _
{l1 l2 l3 l4 l5 : Level} (A : 𝔽 l1)
where
is-finite-fibered-Σ-Decomposition :
subtype (l2 ⊔ l3 ⊔ l4 ⊔ l5)
( fibered-Σ-Decomposition l2 l3 l4 l5 (type-𝔽 A))
is-finite-fibered-Σ-Decomposition D =
Σ-Prop
( is-finite-Σ-Decomposition A ( fst-fibered-Σ-Decomposition D))
( λ p →
is-finite-Σ-Decomposition
( indexing-type-fst-fibered-Σ-Decomposition D ,
(pr1 p))
( snd-fibered-Σ-Decomposition D))
equiv-fibered-Σ-Decomposition-𝔽-is-finite-subtype :
type-subtype is-finite-fibered-Σ-Decomposition ≃
fibered-Σ-Decomposition-𝔽 l2 l3 l4 l5 A
equiv-fibered-Σ-Decomposition-𝔽-is-finite-subtype =
equiv-Σ
( λ D →
Σ-Decomposition-𝔽 l4 l5 ( finite-indexing-type-Σ-Decomposition-𝔽 A D))
( equiv-Σ-Decomposition-𝔽-is-finite-subtype A)
( λ x →
equiv-Σ-Decomposition-𝔽-is-finite-subtype
( indexing-type-Σ-Decomposition
( inclusion-subtype (is-finite-Σ-Decomposition A) x) ,
pr1
( is-in-subtype-inclusion-subtype
( is-finite-Σ-Decomposition A)
(x))))∘e
interchange-Σ-Σ
( λ D D' p →
type-Prop
( is-finite-Σ-Decomposition
( indexing-type-Σ-Decomposition D ,
pr1 p)
( D')))
is-finite-displayed-Σ-Decomposition :
subtype (l2 ⊔ l3 ⊔ l4 ⊔ l5)
( displayed-Σ-Decomposition l2 l3 l4 l5 (type-𝔽 A))
is-finite-displayed-Σ-Decomposition D =
Σ-Prop
( is-finite-Σ-Decomposition A (fst-displayed-Σ-Decomposition D))
( λ p →
Π-Prop
( indexing-type-fst-displayed-Σ-Decomposition D)
( λ x →
is-finite-Σ-Decomposition
( cotype-fst-displayed-Σ-Decomposition D x ,
pr2 p x)
( snd-displayed-Σ-Decomposition D x)))
equiv-displayed-Σ-Decomposition-𝔽-is-finite-subtype :
type-subtype is-finite-displayed-Σ-Decomposition ≃
displayed-Σ-Decomposition-𝔽 l2 l3 l4 l5 A
equiv-displayed-Σ-Decomposition-𝔽-is-finite-subtype =
equiv-Σ
( λ D →
( x : indexing-type-Σ-Decomposition-𝔽 A D) →
( Σ-Decomposition-𝔽 l4 l5 ( finite-cotype-Σ-Decomposition-𝔽 A D x)))
( equiv-Σ-Decomposition-𝔽-is-finite-subtype A)
( λ D1 →
equiv-Π
( _)
( id-equiv)
( λ x →
equiv-Σ-Decomposition-𝔽-is-finite-subtype
( ( cotype-Σ-Decomposition
( inclusion-subtype (is-finite-Σ-Decomposition A) D1)
( x)) ,
pr2
( is-in-subtype-inclusion-subtype
( is-finite-Σ-Decomposition A) D1) x)) ∘e
inv-distributive-Π-Σ) ∘e
interchange-Σ-Σ _
module _
{l1 l : Level} (A : 𝔽 l1)
(D : fibered-Σ-Decomposition l l l l (type-𝔽 A))
where
map-is-finite-displayed-fibered-Σ-Decomposition :
type-Prop (is-finite-fibered-Σ-Decomposition A D) →
type-Prop (is-finite-displayed-Σ-Decomposition A
(map-equiv equiv-displayed-fibered-Σ-Decomposition D))
pr1 (pr1 (map-is-finite-displayed-fibered-Σ-Decomposition p)) =
pr1 (pr2 p)
pr2 (pr1 (map-is-finite-displayed-fibered-Σ-Decomposition p)) =
λ u → is-finite-Σ (pr2 (pr2 p) u) (λ v → (pr2 (pr1 p)) _)
pr1 (pr2 (map-is-finite-displayed-fibered-Σ-Decomposition p) u) =
pr2 (pr2 p) u
pr2 (pr2 (map-is-finite-displayed-fibered-Σ-Decomposition p) u) =
λ v → (pr2 (pr1 p)) _
map-inv-is-finite-displayed-fibered-Σ-Decomposition :
type-Prop (is-finite-displayed-Σ-Decomposition A
(map-equiv equiv-displayed-fibered-Σ-Decomposition D)) →
type-Prop (is-finite-fibered-Σ-Decomposition A D)
pr1 (pr1 (map-inv-is-finite-displayed-fibered-Σ-Decomposition p)) =
is-finite-equiv
( inv-equiv (matching-correspondence-snd-fibered-Σ-Decomposition D))
( is-finite-Σ (pr1 (pr1 p)) λ u → (pr1 (pr2 p u)))
pr2 (pr1 (map-inv-is-finite-displayed-fibered-Σ-Decomposition p)) =
map-inv-equiv
( equiv-precomp-Π
( inv-equiv ( matching-correspondence-snd-fibered-Σ-Decomposition D))
( λ z → is-finite (cotype-fst-fibered-Σ-Decomposition D z)))
λ uv → pr2 (pr2 p (pr1 uv)) (pr2 uv)
pr1 (pr2 (map-inv-is-finite-displayed-fibered-Σ-Decomposition p)) =
pr1 (pr1 p)
pr2 (pr2 (map-inv-is-finite-displayed-fibered-Σ-Decomposition p)) =
λ u → pr1 (pr2 p u)
equiv-is-finite-displayed-fibered-Σ-Decomposition :
type-Prop (is-finite-fibered-Σ-Decomposition A D) ≃
type-Prop (is-finite-displayed-Σ-Decomposition A
(map-equiv equiv-displayed-fibered-Σ-Decomposition D))
equiv-is-finite-displayed-fibered-Σ-Decomposition =
equiv-prop
( is-prop-type-Prop (is-finite-fibered-Σ-Decomposition A D))
( is-prop-type-Prop
( is-finite-displayed-Σ-Decomposition A
( map-equiv equiv-displayed-fibered-Σ-Decomposition D)))
( map-is-finite-displayed-fibered-Σ-Decomposition)
( map-inv-is-finite-displayed-fibered-Σ-Decomposition)
equiv-displayed-fibered-Σ-Decomposition-𝔽 :
{l1 l : Level} (A : 𝔽 l1) →
fibered-Σ-Decomposition-𝔽 l l l l A ≃ displayed-Σ-Decomposition-𝔽 l l l l A
equiv-displayed-fibered-Σ-Decomposition-𝔽 A =
equiv-displayed-Σ-Decomposition-𝔽-is-finite-subtype A ∘e
( equiv-Σ
( λ x → type-Prop (is-finite-displayed-Σ-Decomposition A x))
( equiv-displayed-fibered-Σ-Decomposition)
( equiv-is-finite-displayed-fibered-Σ-Decomposition A) ∘e
inv-equiv ( equiv-fibered-Σ-Decomposition-𝔽-is-finite-subtype A))