Mere equality
module foundation.mere-equality where
Imports
open import foundation.functoriality-propositional-truncation open import foundation.propositional-truncations open import foundation.reflecting-maps-equivalence-relations open import foundation-core.dependent-pair-types open import foundation-core.equivalence-relations open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.sets open import foundation-core.universe-levels
Idea
Two elements in a type are said to be merely equal if there is an element of the propositionally truncated identity type between them.
Definition
module _ {l : Level} {A : UU l} where mere-eq-Prop : A → A → Prop l mere-eq-Prop x y = trunc-Prop (x = y) mere-eq : A → A → UU l mere-eq x y = type-trunc-Prop (x = y) is-prop-mere-eq : (x y : A) → is-prop (mere-eq x y) is-prop-mere-eq x y = is-prop-type-trunc-Prop
Properties
Reflexivity
abstract refl-mere-eq : {l : Level} {A : UU l} {x : A} → mere-eq x x refl-mere-eq = unit-trunc-Prop refl
Symmetry
abstract symm-mere-eq : {l : Level} {A : UU l} {x y : A} → mere-eq x y → mere-eq y x symm-mere-eq {x = x} {y} = map-trunc-Prop inv
Transitivity
abstract trans-mere-eq : {l : Level} {A : UU l} {x y z : A} → mere-eq x y → mere-eq y z → mere-eq x z trans-mere-eq {x = x} {y} {z} p q = apply-universal-property-trunc-Prop p ( mere-eq-Prop x z) ( λ p' → map-trunc-Prop (λ q' → p' ∙ q') q)
Mere equality is an equivalence relation
mere-eq-Eq-Rel : {l1 : Level} (A : UU l1) → Eq-Rel l1 A pr1 (mere-eq-Eq-Rel A) = mere-eq-Prop pr1 (pr2 (mere-eq-Eq-Rel A)) = refl-mere-eq pr1 (pr2 (pr2 (mere-eq-Eq-Rel A))) = symm-mere-eq pr2 (pr2 (pr2 (mere-eq-Eq-Rel A))) = trans-mere-eq
Any map into a set reflects mere equality
module _ {l1 l2 : Level} {A : UU l1} (X : Set l2) (f : A → type-Set X) where reflects-mere-eq : reflects-Eq-Rel (mere-eq-Eq-Rel A) f reflects-mere-eq {x} {y} r = apply-universal-property-trunc-Prop r ( Id-Prop X (f x) (f y)) ( ap f) reflecting-map-mere-eq : reflecting-map-Eq-Rel (mere-eq-Eq-Rel A) (type-Set X) pr1 reflecting-map-mere-eq = f pr2 reflecting-map-mere-eq = reflects-mere-eq
If mere equality maps into the identity type of A
, then A
is a set
is-set-mere-eq-in-id : {l : Level} {A : UU l} → ((x y : A) → mere-eq x y → x = y) → is-set A is-set-mere-eq-in-id = is-set-prop-in-id ( mere-eq) ( is-prop-mere-eq) ( λ x → refl-mere-eq)