Small multisets
module trees.small-multisets where
Imports
open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.equivalences open import foundation.functions open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.small-types open import foundation.subtypes open import foundation.univalence open import foundation.universe-levels open import trees.multisets open import trees.w-types
Idea
A multiset X := tree-𝕎 A α
is said to be small with respect to a universe
UU l
if its symbol A
is a small type with respect to UU l
, and if each
α x
is a small multiset with respect to UU l
.
Definition
Small multisets
is-small-𝕍-Prop : (l : Level) {l1 : Level} → 𝕍 l1 → Prop (l1 ⊔ lsuc l) is-small-𝕍-Prop l (tree-𝕎 A α) = prod-Prop (is-small-Prop l A) (Π-Prop A (λ x → is-small-𝕍-Prop l (α x))) is-small-𝕍 : (l : Level) {l1 : Level} → 𝕍 l1 → UU (l1 ⊔ lsuc l) is-small-𝕍 l X = type-Prop (is-small-𝕍-Prop l X) is-prop-is-small-𝕍 : {l l1 : Level} (X : 𝕍 l1) → is-prop (is-small-𝕍 l X) is-prop-is-small-𝕍 {l} X = is-prop-type-Prop (is-small-𝕍-Prop l X)
Resizing small multisets
resize-𝕍 : {l1 l2 : Level} (X : 𝕍 l1) → is-small-𝕍 l2 X → 𝕍 l2 resize-𝕍 (tree-𝕎 A α) (pair (pair A' e) H2) = tree-𝕎 A' ( λ x' → resize-𝕍 (α (map-inv-equiv e x')) (H2 (map-inv-equiv e x')))
Properties
The comprehension of a small multiset equipped with a small predicate is small
is-small-comprehension-𝕍 : (l : Level) {l1 : Level} {X : 𝕍 l1} {P : shape-𝕎 X → UU l1} → is-small-𝕍 l X → ((x : shape-𝕎 X) → is-small l (P x)) → is-small-𝕍 l (comprehension-𝕍 X P) is-small-comprehension-𝕍 l {l1} {tree-𝕎 A α} {P} (pair (pair X e) H) K = pair ( is-small-Σ (pair X e) K) ( λ t → H (pr1 t))
The identity type between small multisets is small
is-small-eq-𝕍 : (l : Level) {l1 : Level} {X Y : 𝕍 l1} → is-small-𝕍 l X → is-small-𝕍 l Y → is-small l (X = Y) is-small-eq-𝕍 l {l1} {tree-𝕎 A α} {tree-𝕎 B β} (pair (pair X e) H) (pair (pair Y f) K) = is-small-equiv ( Eq-𝕎 (tree-𝕎 A α) (tree-𝕎 B β)) ( equiv-Eq-𝕎-eq (tree-𝕎 A α) (tree-𝕎 B β)) ( is-small-Σ ( is-small-equiv ( A ≃ B) ( equiv-univalence) ( pair ( X ≃ Y) ( equiv-precomp-equiv (inv-equiv e) Y ∘e equiv-postcomp-equiv f A))) ( σ)) where σ : (x : A = B) → is-small l ((z : A) → Eq-𝕎 (α z) (β (tr id x z))) σ refl = is-small-Π ( pair X e) ( λ x → is-small-equiv ( α x = β x) ( inv-equiv (equiv-Eq-𝕎-eq (α x) (β x))) ( is-small-eq-𝕍 l (H x) (K x)))
The elementhood relation between small multisets is small
is-small-∈-𝕍 : (l : Level) {l1 : Level} {X Y : 𝕍 l1} → is-small-𝕍 l X → is-small-𝕍 l Y → is-small l (X ∈-𝕍 Y) is-small-∈-𝕍 l {l1} {tree-𝕎 A α} {tree-𝕎 B β} H (pair (pair Y f) K) = is-small-Σ ( pair Y f) ( λ b → is-small-eq-𝕍 l (K b) H) is-small-∉-𝕍 : (l : Level) {l1 : Level} {X Y : 𝕍 l1} → is-small-𝕍 l X → is-small-𝕍 l Y → is-small l (X ∉-𝕍 Y) is-small-∉-𝕍 l {l1} {X} {Y} H K = is-small-Π ( is-small-∈-𝕍 l {l1} {X} {Y} H K) ( λ x → pair (raise-empty l) (compute-raise-empty l))
The resizing of a small multiset is small
is-small-resize-𝕍 : {l1 l2 : Level} (X : 𝕍 l1) (H : is-small-𝕍 l2 X) → is-small-𝕍 l1 (resize-𝕍 X H) is-small-resize-𝕍 (tree-𝕎 A α) (pair (pair A' e) H2) = pair ( pair A (inv-equiv e)) ( λ a' → is-small-resize-𝕍 ( α (map-inv-equiv e a')) ( H2 (map-inv-equiv e a')))
The type of UU l2
-small multisets in 𝕍 l1
is equivalent to the type of UU l1
-small multisets in 𝕍 l2
resize-𝕍' : {l1 l2 : Level} → Σ (𝕍 l1) (is-small-𝕍 l2) → Σ (𝕍 l2) (is-small-𝕍 l1) resize-𝕍' (pair X H) = pair (resize-𝕍 X H) (is-small-resize-𝕍 X H) abstract resize-resize-𝕍 : {l1 l2 : Level} {x : 𝕍 l1} (H : is-small-𝕍 l2 x) → resize-𝕍 (resize-𝕍 x H) (is-small-resize-𝕍 x H) = x resize-resize-𝕍 {x = tree-𝕎 A α} (pair (pair A' e) H) = eq-Eq-𝕎 ( resize-𝕍 ( resize-𝕍 (tree-𝕎 A α) (pair (pair A' e) H)) ( is-small-resize-𝕍 (tree-𝕎 A α) (pair (pair A' e) H))) ( tree-𝕎 A α) ( pair ( refl) ( λ z → Eq-𝕎-eq ( resize-𝕍 ( resize-𝕍 ( α (map-inv-equiv e (map-inv-equiv (inv-equiv e) z))) ( H (map-inv-equiv e (map-inv-equiv (inv-equiv e) z)))) ( is-small-resize-𝕍 ( α (map-inv-equiv e (map-inv-equiv (inv-equiv e) z))) ( H (map-inv-equiv e (map-inv-equiv (inv-equiv e) z))))) ( α z) ( ( ap ( λ t → resize-𝕍 ( resize-𝕍 (α t) (H t)) ( is-small-resize-𝕍 (α t) (H t))) ( isretr-map-inv-equiv e z)) ∙ ( resize-resize-𝕍 (H z))))) abstract resize-resize-𝕍' : {l1 l2 : Level} → (resize-𝕍' {l2} {l1} ∘ resize-𝕍' {l1} {l2}) ~ id resize-resize-𝕍' {l1} {l2} (pair X H) = eq-type-subtype ( is-small-𝕍-Prop l2) ( resize-resize-𝕍 H) is-equiv-resize-𝕍' : {l1 l2 : Level} → is-equiv (resize-𝕍' {l1} {l2}) is-equiv-resize-𝕍' {l1} {l2} = is-equiv-has-inverse ( resize-𝕍' {l2} {l1}) ( resize-resize-𝕍') ( resize-resize-𝕍') equiv-resize-𝕍' : {l1 l2 : Level} → Σ (𝕍 l1) (is-small-𝕍 l2) ≃ Σ (𝕍 l2) (is-small-𝕍 l1) equiv-resize-𝕍' {l1} {l2} = pair resize-𝕍' is-equiv-resize-𝕍'
The resizing operation on small multisets is an embedding
eq-resize-𝕍 : {l1 l2 : Level} {x y : 𝕍 l1} (H : is-small-𝕍 l2 x) (K : is-small-𝕍 l2 y) → (x = y) ≃ (resize-𝕍 x H = resize-𝕍 y K) eq-resize-𝕍 {l1} {l2} H K = ( extensionality-type-subtype' ( is-small-𝕍-Prop l1) ( resize-𝕍' (pair _ H)) ( resize-𝕍' (pair _ K))) ∘e ( ( equiv-ap (equiv-resize-𝕍') (pair _ H) (pair _ K)) ∘e ( inv-equiv ( extensionality-type-subtype' ( is-small-𝕍-Prop l2) ( pair _ H) ( pair _ K))))
The resizing operation on small multisets respects the elementhood relation
abstract equiv-elementhood-resize-𝕍 : {l1 l2 : Level} {x y : 𝕍 l1} (H : is-small-𝕍 l2 x) (K : is-small-𝕍 l2 y) → (x ∈-𝕍 y) ≃ (resize-𝕍 x H ∈-𝕍 resize-𝕍 y K) equiv-elementhood-resize-𝕍 {x = X} {tree-𝕎 B β} H (pair (pair B' e) K) = equiv-Σ ( λ y' → ( component-𝕎 (resize-𝕍 (tree-𝕎 B β) (pair (pair B' e) K)) y') = ( resize-𝕍 X H)) ( e) ( λ b → ( equiv-concat ( ap ( λ t → resize-𝕍 (β t) (K t)) ( isretr-map-inv-equiv e b)) ( resize-𝕍 X H)) ∘e ( eq-resize-𝕍 (K b) H))
The type of all multisets of universe level l1
is UU l2
-small if each type in UU l1
is UU l2
-small
is-small-multiset-𝕍 : {l1 l2 : Level} → ((A : UU l1) → is-small l2 A) → (X : 𝕍 l1) → is-small-𝕍 l2 X is-small-multiset-𝕍 {l1} {l2} H (tree-𝕎 A α) = pair (H A) (λ x → is-small-multiset-𝕍 H (α x))