Commuting cubes of maps
module foundation.commuting-cubes-of-maps where
Imports
open import foundation-core.commuting-cubes-of-maps public open import foundation-core.cones-over-cospans open import foundation-core.dependent-pair-types open import foundation-core.functions open import foundation-core.homotopies open import foundation-core.universe-levels
Properties
Any coherence of commuting cubes induces a coherence of parallel cones
coherence-htpy-parallel-cone-coherence-cube-maps : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube-maps f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → coherence-htpy-parallel-cone ( front-left) ( refl-htpy' k) ( pair f' ( pair ( g ∘ hA) ( rectangle-back-left-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( pair f' ( pair ( hC ∘ g') ( rectangle-top-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( refl-htpy' f') ( back-right) coherence-htpy-parallel-cone-coherence-cube-maps f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c = ( assoc-htpy ( h ·l (inv-htpy back-left)) ( bottom ·r hA) ( (k ·l back-right) ∙h (refl-htpy' (k ∘ (hC ∘ g'))))) ∙h ( ( ap-concat-htpy' ( h ·l (inv-htpy back-left)) ( inv-htpy (h ·l back-left)) ( _) ( left-whisk-inv-htpy h back-left)) ∙h ( inv-htpy-inv-con-htpy (h ·l back-left) _ _ ( ( (inv-htpy-assoc-htpy (h ·l back-left) (front-left ·r f') _) ∙h ( ( inv-htpy-assoc-htpy ( (h ·l back-left) ∙h (front-left ·r f')) ( hD ·l top) ( (inv-htpy front-right) ·r g')) ∙h ( inv-htpy-con-inv-htpy _ (front-right ·r g') _ ( (assoc-htpy (bottom ·r hA) _ _) ∙h (inv-htpy c))))) ∙h ( ap-concat-htpy (bottom ·r hA) _ _ inv-htpy-right-unit-htpy))))