Central elements of semirings
module ring-theory.central-elements-semirings where
Imports
open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.central-elements-monoids open import ring-theory.semirings
Idea
An element x
of a semiring R
is said to be central if xy = yx
for every
y : R
.
Definition
module _ {l : Level} (R : Semiring l) where is-central-element-semiring-Prop : type-Semiring R → Prop l is-central-element-semiring-Prop = is-central-element-monoid-Prop ( multiplicative-monoid-Semiring R) is-central-element-Semiring : type-Semiring R → UU l is-central-element-Semiring = is-central-element-Monoid (multiplicative-monoid-Semiring R) is-prop-is-central-element-Semiring : (x : type-Semiring R) → is-prop (is-central-element-Semiring x) is-prop-is-central-element-Semiring = is-prop-is-central-element-Monoid (multiplicative-monoid-Semiring R)
Properties
The zero element is central
module _ {l : Level} (R : Semiring l) where is-central-element-zero-Semiring : is-central-element-Semiring R (zero-Semiring R) is-central-element-zero-Semiring x = left-zero-law-mul-Semiring R x ∙ inv (right-zero-law-mul-Semiring R x)
The unit element is central
module _ {l : Level} (R : Semiring l) where is-central-element-one-Semiring : is-central-element-Semiring R (one-Semiring R) is-central-element-one-Semiring = is-central-element-unit-Monoid (multiplicative-monoid-Semiring R)
The sum of two central elements is central
module _ {l : Level} (R : Semiring l) where is-central-element-add-Semiring : (x y : type-Semiring R) → is-central-element-Semiring R x → is-central-element-Semiring R y → is-central-element-Semiring R (add-Semiring R x y) is-central-element-add-Semiring x y H K z = ( right-distributive-mul-add-Semiring R x y z) ∙ ( ( ap-add-Semiring R (H z) (K z)) ∙ ( inv (left-distributive-mul-add-Semiring R z x y)))
The product of two central elements is central
module _ {l : Level} (R : Semiring l) where is-central-element-mul-Semiring : (x y : type-Semiring R) → is-central-element-Semiring R x → is-central-element-Semiring R y → is-central-element-Semiring R (mul-Semiring R x y) is-central-element-mul-Semiring = is-central-element-mul-Monoid (multiplicative-monoid-Semiring R)