Decidable maps
module foundation.decidable-maps where
Imports
open import foundation.decidable-equality open import foundation.decidable-types open import foundation-core.dependent-pair-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.functions open import foundation-core.functoriality-dependent-pair-types open import foundation-core.identity-types open import foundation-core.retractions open import foundation-core.universe-levels
Definition
A map is said to be decidable if its fibers are decidable types.
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-decidable-map : (A → B) → UU (l1 ⊔ l2) is-decidable-map f = (y : B) → is-decidable (fib f y)
is-decidable-map-retr : {l1 l2 : Level} {A : UU l1} {B : UU l2} → has-decidable-equality B → (i : A → B) → retr i → is-decidable-map i is-decidable-map-retr d i (pair r R) b = is-decidable-iff ( λ (p : i (r b) = b) → pair (r b) p) ( λ t → ap (i ∘ r) (inv (pr2 t)) ∙ (ap i (R (pr1 t)) ∙ pr2 t)) ( d (i (r b)) b)
Properties
The map on total spaces induced by a family of decidable embeddings is a decidable embeddings
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} where is-decidable-map-tot : {f : (x : A) → B x → C x} → ((x : A) → is-decidable-map (f x)) → is-decidable-map (tot f) is-decidable-map-tot {f} H x = is-decidable-is-equiv ( is-equiv-map-equiv ( compute-fib-tot f x)) ( H (pr1 x) (pr2 x))