Conjugation in groups
module group-theory.conjugation where
Imports
open import foundation.dependent-pair-types open import foundation.equivalence-extensionality open import foundation.equivalences open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import group-theory.group-actions open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.isomorphisms-groups
Idea
Conjugation by an element x
in a group G
is the map y ↦ (xy)x⁻¹
.
Definition
Conjugation
module _ {l : Level} (G : Group l) where equiv-conjugation-Group : (x : type-Group G) → type-Group G ≃ type-Group G equiv-conjugation-Group x = equiv-mul-Group' G (inv-Group G x) ∘e equiv-mul-Group G x conjugation-Group : (x : type-Group G) → type-Group G → type-Group G conjugation-Group x = map-equiv (equiv-conjugation-Group x) equiv-conjugation-Group' : (x : type-Group G) → type-Group G ≃ type-Group G equiv-conjugation-Group' x = equiv-mul-Group' G x ∘e equiv-mul-Group G (inv-Group G x) conjugation-Group' : (x : type-Group G) → type-Group G → type-Group G conjugation-Group' x = map-equiv (equiv-conjugation-Group' x)
The conjugation action of a group on itself
module _ {l1 : Level} (G : Group l1) where conjugation-Abstract-Group-Action : Abstract-Group-Action G l1 pr1 conjugation-Abstract-Group-Action = set-Group G pr1 (pr2 conjugation-Abstract-Group-Action) g = equiv-conjugation-Group G g pr2 (pr2 conjugation-Abstract-Group-Action) g h = eq-htpy-equiv ( λ x → ( ap-mul-Group G ( associative-mul-Group G g h x) ( distributive-inv-mul-Group G g h)) ∙ ( ( inv ( associative-mul-Group G ( mul-Group G g (mul-Group G h x)) ( inv-Group G h) ( inv-Group G g))) ∙ ( ap ( mul-Group' G (inv-Group G g)) ( associative-mul-Group G g ( mul-Group G h x) ( inv-Group G h)))))
Properties
Laws for conjugation and multiplication
module _ {l : Level} (G : Group l) where conjugation-unit-Group : (x : type-Group G) → conjugation-Group G x (unit-Group G) = unit-Group G conjugation-unit-Group x = ( ap (mul-Group' G (inv-Group G x)) (right-unit-law-mul-Group G x)) ∙ ( right-inverse-law-mul-Group G x) htpy-conjugation-Group : (x : type-Group G) → conjugation-Group' G x ~ conjugation-Group G (inv-Group G x) htpy-conjugation-Group x y = ap ( mul-Group G (mul-Group G (inv-Group G x) y)) ( inv (inv-inv-Group G x)) htpy-conjugation-Group' : (x : type-Group G) → conjugation-Group G x ~ conjugation-Group' G (inv-Group G x) htpy-conjugation-Group' x y = ap ( mul-Group' G (inv-Group G x)) ( ap (mul-Group' G y) (inv (inv-inv-Group G x))) right-conjugation-law-mul-Group : (x y : type-Group G) → mul-Group G (inv-Group G x) (conjugation-Group G x y) = right-div-Group G y x right-conjugation-law-mul-Group x y = inv ( transpose-eq-mul-Group' G ( inv (associative-mul-Group G x y (inv-Group G x)))) right-conjugation-law-mul-Group' : (x y : type-Group G) → mul-Group G x (conjugation-Group' G x y) = mul-Group G y x right-conjugation-law-mul-Group' x y = ( ap ( mul-Group G x) ( associative-mul-Group G (inv-Group G x) y x)) ∙ ( issec-mul-inv-Group G x (mul-Group G y x)) left-conjugation-law-mul-Group : (x y : type-Group G) → mul-Group G (conjugation-Group G x y) x = mul-Group G x y left-conjugation-law-mul-Group x y = ( associative-mul-Group G (mul-Group G x y) (inv-Group G x) x) ∙ ( ( ap ( mul-Group G (mul-Group G x y)) ( left-inverse-law-mul-Group G x)) ∙ ( right-unit-law-mul-Group G (mul-Group G x y))) left-conjugation-law-mul-Group' : (x y : type-Group G) → mul-Group G (conjugation-Group' G x y) (inv-Group G x) = left-div-Group G x y left-conjugation-law-mul-Group' x y = isretr-mul-inv-Group' G x (mul-Group G (inv-Group G x) y) distributive-conjugation-mul-Group : (x y z : type-Group G) → conjugation-Group G x (mul-Group G y z) = mul-Group G (conjugation-Group G x y) (conjugation-Group G x z) distributive-conjugation-mul-Group x y z = ( ap ( mul-Group' G (inv-Group G x)) ( ( ( inv (associative-mul-Group G x y z)) ∙ ( ap ( mul-Group' G z) ( inv (issec-mul-inv-Group' G x (mul-Group G x y))))) ∙ ( associative-mul-Group G ( conjugation-Group G x y) ( x) ( z)))) ∙ ( associative-mul-Group G ( conjugation-Group G x y) ( mul-Group G x z) ( inv-Group G x)) conjugation-inv-Group : (x y : type-Group G) → conjugation-Group G x (inv-Group G y) = inv-Group G (conjugation-Group G x y) conjugation-inv-Group x y = ( inv (inv-inv-Group G (conjugation-Group G x (inv-Group G y)))) ∙ ( ap ( inv-Group G) ( ( distributive-inv-mul-Group G ( mul-Group G x (inv-Group G y)) ( inv-Group G x)) ∙ ( ( ap-mul-Group G ( inv-inv-Group G x) ( ( distributive-inv-mul-Group G x (inv-Group G y)) ∙ ( ap ( mul-Group' G (inv-Group G x)) ( inv-inv-Group G y)))) ∙ ( inv (associative-mul-Group G x y ( inv-Group G x)))))) conjugation-inv-Group' : (x y : type-Group G) → conjugation-Group' G x (inv-Group G y) = inv-Group G (conjugation-Group' G x y) conjugation-inv-Group' x y = ( ap (mul-Group' G x) (inv (distributive-inv-mul-Group G y x))) ∙ ( ( ap ( mul-Group G (inv-Group G (mul-Group G y x))) ( inv (inv-inv-Group G x))) ∙ ( ( inv ( distributive-inv-mul-Group G ( inv-Group G x) ( mul-Group G y x))) ∙ ( ap ( inv-Group G) ( inv (associative-mul-Group G (inv-Group G x) y x))))) conjugation-left-div-Group : (x y : type-Group G) → conjugation-Group G x (left-div-Group G x y) = right-div-Group G y x conjugation-left-div-Group x y = ap (mul-Group' G (inv-Group G x)) (issec-mul-inv-Group G x y) conjugation-left-div-Group' : (x y : type-Group G) → conjugation-Group G y (left-div-Group G x y) = right-div-Group G y x conjugation-left-div-Group' x y = ( ap ( mul-Group' G (inv-Group G y)) ( inv (associative-mul-Group G y (inv-Group G x) y))) ∙ ( isretr-mul-inv-Group' G y (right-div-Group G y x)) conjugation-right-div-Group : (x y : type-Group G) → conjugation-Group' G y (right-div-Group G x y) = left-div-Group G y x conjugation-right-div-Group x y = ( associative-mul-Group G ( inv-Group G y) ( right-div-Group G x y) ( y)) ∙ ( ap (mul-Group G (inv-Group G y)) (issec-mul-inv-Group' G y x)) conjugation-right-div-Group' : (x y : type-Group G) → conjugation-Group' G x (right-div-Group G x y) = left-div-Group G y x conjugation-right-div-Group' x y = ap (mul-Group' G x) (isretr-mul-inv-Group G x (inv-Group G y))
Conjugation by x
is an automorphism of G
module _ {l : Level} (G : Group l) where conjugation-hom-Group : type-Group G → type-hom-Group G G pr1 (conjugation-hom-Group x) = conjugation-Group G x pr2 (conjugation-hom-Group x) = distributive-conjugation-mul-Group G x conjugation-equiv-Group : type-Group G → equiv-Group G G pr1 (conjugation-equiv-Group x) = equiv-conjugation-Group G x pr2 (conjugation-equiv-Group x) = distributive-conjugation-mul-Group G x conjugation-iso-Group : type-Group G → type-iso-Group G G conjugation-iso-Group x = iso-equiv-Group G G (conjugation-equiv-Group x)