The unit of Cauchy composition of species of types in subuniverses
module species.unit-cauchy-composition-species-of-types-in-subuniverses where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.functions open import foundation.subuniverses open import foundation.universe-levels open import species.species-of-types-in-subuniverses
Idea
Given a global subuniverse closed under is-contr
, we define the unit of the
Cauchy composition of species of types in a subuniverse by
X ↦ is-contr X.
Definition
module _ {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) (C4 : is-closed-under-is-contr-subuniverses P ( subuniverse-global-subuniverse Q l1)) where cauchy-composition-unit-species-subuniverse : species-subuniverse P (subuniverse-global-subuniverse Q l1) cauchy-composition-unit-species-subuniverse X = (is-contr (inclusion-subuniverse P X) , C4 X)