Discrete Σ-Decompositions
module foundation.discrete-sigma-decompositions where
Imports
open import foundation.contractible-types open import foundation.equivalences open import foundation.propositional-truncations open import foundation.sigma-decompositions open import foundation.unit-type open import foundation-core.dependent-pair-types open import foundation-core.equality-dependent-pair-types open import foundation-core.functions open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.subtypes open import foundation-core.type-arithmetic-dependent-pair-types open import foundation-core.universe-levels
Definition
module _ {l1 : Level} (l2 : Level) (A : UU l1) where discrete-Σ-Decomposition : Σ-Decomposition l1 l2 A pr1 discrete-Σ-Decomposition = A pr1 (pr2 discrete-Σ-Decomposition) a = ( raise-unit l2 , unit-trunc-Prop (raise-star)) pr2 (pr2 discrete-Σ-Decomposition) = inv-equiv ( equiv-pr1 ( λ _ → is-contr-raise-unit)) module _ {l1 l2 l3 : Level} {A : UU l1} (D : Σ-Decomposition l2 l3 A) where is-discrete-Prop-Σ-Decomposition : Prop (l2 ⊔ l3) is-discrete-Prop-Σ-Decomposition = Π-Prop ( indexing-type-Σ-Decomposition D) ( λ x → is-contr-Prop (cotype-Σ-Decomposition D x)) is-discrete-Σ-Decomposition : UU (l2 ⊔ l3) is-discrete-Σ-Decomposition = type-Prop (is-discrete-Prop-Σ-Decomposition) is-discrete-discrete-Σ-Decomposition : {l1 l2 : Level} {A : UU l1} → is-discrete-Σ-Decomposition (discrete-Σ-Decomposition l2 A) is-discrete-discrete-Σ-Decomposition = λ x → is-contr-raise-unit type-discrete-Σ-Decomposition : {l1 l2 l3 : Level} {A : UU l1} → UU (l1 ⊔ lsuc l2 ⊔ lsuc l3) type-discrete-Σ-Decomposition {l1} {l2} {l3} {A} = type-subtype (is-discrete-Prop-Σ-Decomposition {l1} {l2} {l3} {A})
Propositions
module _ {l1 l2 l3 l4 : Level} {A : UU l1} (D : Σ-Decomposition l2 l3 A) (is-discrete : is-discrete-Σ-Decomposition D) where equiv-discrete-is-discrete-Σ-Decomposition : equiv-Σ-Decomposition D (discrete-Σ-Decomposition l4 A) pr1 equiv-discrete-is-discrete-Σ-Decomposition = ( inv-equiv ( right-unit-law-Σ-is-contr is-discrete ∘e matching-correspondence-Σ-Decomposition D)) pr1 (pr2 equiv-discrete-is-discrete-Σ-Decomposition) x = ( map-equiv (compute-raise-unit l4) ∘ terminal-map , is-equiv-comp ( map-equiv (compute-raise-unit l4)) ( terminal-map) ( is-equiv-terminal-map-is-contr (is-discrete x)) ( is-equiv-map-equiv ( compute-raise-unit l4))) pr2 (pr2 equiv-discrete-is-discrete-Σ-Decomposition) a = eq-pair-Σ ( ap ( λ f → map-equiv f a) ( ( left-inverse-law-equiv ( equiv-pr1 is-discrete ∘e matching-correspondence-Σ-Decomposition D)) ∙ ( ( inv ( right-inverse-law-equiv ( equiv-pr1 ( λ _ → is-contr-raise-unit))))))) ( eq-is-contr is-contr-raise-unit) is-contr-type-discrete-Σ-Decomposition : {l1 l2 : Level} {A : UU l1} → is-contr (type-discrete-Σ-Decomposition {l1} {l1} {l2} {A}) pr1 ( is-contr-type-discrete-Σ-Decomposition {l1} {l2} {A}) = ( discrete-Σ-Decomposition l2 A , is-discrete-discrete-Σ-Decomposition) pr2 ( is-contr-type-discrete-Σ-Decomposition {l1} {l2} {A}) = ( λ x → eq-type-subtype ( is-discrete-Prop-Σ-Decomposition) ( inv ( eq-equiv-Σ-Decomposition ( pr1 x) ( discrete-Σ-Decomposition l2 A) ( equiv-discrete-is-discrete-Σ-Decomposition (pr1 x) (pr2 x)))))