Maximal chains in posets
module order-theory.maximal-chains-posets where
Imports
open import foundation.propositions open import foundation.universe-levels open import order-theory.chains-posets open import order-theory.maximal-chains-preorders open import order-theory.posets
Idea
A maximal chain in a poset P
is a chain C
in P
such that for any chain
D
we have C ⊆ D ⇒ C = D
.
Definition
module _ {l1 l2 : Level} (X : Poset l1 l2) where is-maximal-chain-Poset-Prop : {l3 : Level} → chain-Poset l3 X → Prop (l1 ⊔ l2 ⊔ lsuc l3) is-maximal-chain-Poset-Prop = is-maximal-chain-Preorder-Prop (preorder-Poset X) is-maximal-chain-Poset : {l3 : Level} → chain-Poset l3 X → UU (l1 ⊔ l2 ⊔ lsuc l3) is-maximal-chain-Poset = is-maximal-chain-Preorder (preorder-Poset X) is-prop-is-maximal-chain-Poset : {l3 : Level} (C : chain-Poset l3 X) → is-prop (is-maximal-chain-Poset C) is-prop-is-maximal-chain-Poset = is-prop-is-maximal-chain-Preorder (preorder-Poset X) maximal-chain-Poset : {l1 l2 : Level} (l3 : Level) (X : Poset l1 l2) → UU (l1 ⊔ l2 ⊔ lsuc l3) maximal-chain-Poset l3 X = maximal-chain-Preorder l3 (preorder-Poset X) module _ {l1 l2 l3 : Level} (X : Poset l1 l2) (C : maximal-chain-Poset l3 X) where chain-maximal-chain-Poset : chain-Poset l3 X chain-maximal-chain-Poset = chain-maximal-chain-Preorder (preorder-Poset X) C is-maximal-chain-maximal-chain-Poset : is-maximal-chain-Poset X chain-maximal-chain-Poset is-maximal-chain-maximal-chain-Poset = is-maximal-chain-maximal-chain-Preorder (preorder-Poset X) C type-maximal-chain-Poset : UU (l1 ⊔ l3) type-maximal-chain-Poset = type-maximal-chain-Preorder (preorder-Poset X) C