Path-split maps
module foundation.path-split-maps where
Imports
open import foundation-core.path-split-maps public open import foundation.equivalences open import foundation-core.contractible-types open import foundation-core.dependent-pair-types open import foundation-core.propositions open import foundation-core.universe-levels
Properties
Being path-split is a property
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-prop-is-path-split : (f : A → B) → is-prop (is-path-split f) is-prop-is-path-split f = is-prop-is-proof-irrelevant ( λ is-path-split-f → ( is-contr-prod ( is-contr-sec-is-equiv (is-equiv-is-path-split f is-path-split-f)) ( is-contr-Π ( λ x → is-contr-Π ( λ y → is-contr-sec-is-equiv ( is-emb-is-equiv ( is-equiv-is-path-split f is-path-split-f) x y)))))) abstract is-equiv-is-path-split-is-equiv : (f : A → B) → is-equiv (is-path-split-is-equiv f) is-equiv-is-path-split-is-equiv f = is-equiv-is-prop ( is-property-is-equiv f) ( is-prop-is-path-split f) ( is-equiv-is-path-split f) equiv-is-path-split-is-equiv : (f : A → B) → is-equiv f ≃ is-path-split f equiv-is-path-split-is-equiv f = pair (is-path-split-is-equiv f) (is-equiv-is-path-split-is-equiv f) abstract is-equiv-is-equiv-is-path-split : (f : A → B) → is-equiv (is-equiv-is-path-split f) is-equiv-is-equiv-is-path-split f = is-equiv-is-prop ( is-prop-is-path-split f) ( is-property-is-equiv f) ( is-path-split-is-equiv f) equiv-is-equiv-is-path-split : (f : A → B) → is-path-split f ≃ is-equiv f equiv-is-equiv-is-path-split f = pair (is-equiv-is-path-split f) (is-equiv-is-equiv-is-path-split f)
See also
- For the notion of biinvertible maps see
foundation.equivalences
. - For the notions of inverses and coherently invertible maps, also known as
half-adjoint equivalences, see
foundation.coherently-invertible-maps
. - For the notion of maps with contractible fibers see
foundation.contractible-maps
.