Cauchy composition of species of types in a subuniverse
module species.cauchy-composition-species-of-types-in-subuniverses where
Imports
open import foundation.cartesian-product-types open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equality-cartesian-product-types open import foundation.equivalences open import foundation.functions open import foundation.functoriality-cartesian-product-types open import foundation.functoriality-dependent-function-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.relaxed-sigma-decompositions open import foundation.sigma-decomposition-subuniverse open import foundation.subuniverses open import foundation.type-arithmetic-cartesian-product-types open import foundation.type-arithmetic-dependent-pair-types open import foundation.type-theoretic-principle-of-choice open import foundation.unit-type open import foundation.univalence open import foundation.universe-levels open import species.cauchy-composition-species-of-types open import species.species-of-types-in-subuniverses open import species.unit-cauchy-composition-species-of-types open import species.unit-cauchy-composition-species-of-types-in-subuniverses
Idea
A species S : type-subuniverse P → type-subuniverse Q
induces its
Cauchy series
X ↦ Σ (A : type-subuniverse P), (S A) × (A → X)
The Cauchy composition of species S
and T
is obtained from the
coefficients of the composite of the Cauchy series of S
and T
.
Definition
Cauchy composition of species
module _ {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) where type-cauchy-composition-species-subuniverse : {l3 l4 : Level} → (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) → (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) → type-subuniverse P → UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4) type-cauchy-composition-species-subuniverse {l3} {l4} S T X = Σ ( Σ-Decomposition-Subuniverse P X) ( λ D → ( inclusion-subuniverse ( subuniverse-global-subuniverse Q l3) ( S (subuniverse-indexing-type-Σ-Decomposition-Subuniverse P X D))) × ( (x : indexing-type-Σ-Decomposition-Subuniverse P X D) → inclusion-subuniverse ( subuniverse-global-subuniverse Q l4) ( T (subuniverse-cotype-Σ-Decomposition-Subuniverse P X D x)))) is-closed-under-cauchy-composition-species-subuniverse : UUω is-closed-under-cauchy-composition-species-subuniverse = { l3 l4 : Level} ( S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) ( T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) ( X : type-subuniverse P) → is-in-global-subuniverse id Q ( type-cauchy-composition-species-subuniverse S T X) module _ {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) (C1 : is-closed-under-cauchy-composition-species-subuniverse P Q) (C2 : is-closed-under-Σ-subuniverse P) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) where cauchy-composition-species-subuniverse : species-subuniverse ( P) ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4)) cauchy-composition-species-subuniverse X = ( type-cauchy-composition-species-subuniverse P Q S T X , C1 S T X)
Properties
Σ-extension of species of types in a subuniverse preserves cauchy composition
module _ {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) (C1 : is-closed-under-cauchy-composition-species-subuniverse P Q) (C2 : is-closed-under-Σ-subuniverse P) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) where preserves-cauchy-composition-Σ-extension-species-subuniverse : ( X : UU l1) → Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4)) ( cauchy-composition-species-subuniverse P Q C1 C2 S T) ( X) ≃ ( cauchy-composition-species-types ( Σ-extension-species-subuniverse P ( subuniverse-global-subuniverse Q l3) ( S)) ( Σ-extension-species-subuniverse P ( subuniverse-global-subuniverse Q l4) ( T)) ( X)) preserves-cauchy-composition-Σ-extension-species-subuniverse X = ( ( equiv-tot ( λ D → ( ( equiv-prod id-equiv (inv-equiv distributive-Π-Σ)) ∘e ( ( inv-equiv right-distributive-prod-Σ) ∘e ( ( equiv-tot (λ _ → inv-equiv (left-distributive-prod-Σ)))))) ∘e ( ( associative-Σ _ _ _)))) ∘e ( ( associative-Σ ( Relaxed-Σ-Decomposition l1 l1 X) ( λ D → is-in-subuniverse P (indexing-type-Relaxed-Σ-Decomposition D) × ((x : indexing-type-Relaxed-Σ-Decomposition D) → is-in-subuniverse P (cotype-Relaxed-Σ-Decomposition D x))) ( _)) ∘e ( ( equiv-Σ-equiv-base ( _) ( ( inv-equiv ( equiv-add-redundant-prop ( is-prop-type-Prop (P X)) ( λ D → ( tr ( is-in-subuniverse P) ( eq-equiv ( Σ (indexing-type-Relaxed-Σ-Decomposition (pr1 D)) (cotype-Relaxed-Σ-Decomposition (pr1 D))) ( X) ( inv-equiv ( matching-correspondence-Relaxed-Σ-Decomposition ( pr1 D)))) ( C2 ( indexing-type-Relaxed-Σ-Decomposition (pr1 D) , pr1 (pr2 D)) ( λ x → ( cotype-Relaxed-Σ-Decomposition (pr1 D) x , pr2 (pr2 D) x)))))) ∘e ( commutative-prod ∘e ( equiv-tot ( λ p → equiv-total-is-in-subuniverse-Σ-Decomposition ( P) (X , p))))))) ∘e ( ( inv-associative-Σ ( is-in-subuniverse P X) ( λ p → Σ-Decomposition-Subuniverse P (X , p)) ( _))))))
Unit laws for Cauchy composition of species-subuniverse
module _ {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) ( C3 : is-in-subuniverse P (raise-unit l1)) ( C4 : is-closed-under-is-contr-subuniverses P ( subuniverse-global-subuniverse Q l1)) (X : UU l1) where map-equiv-Σ-extension-cauchy-composition-unit-subuniverse : Σ-extension-species-subuniverse P ( subuniverse-global-subuniverse Q l1) ( cauchy-composition-unit-species-subuniverse P Q C4) ( X) → unit-species-types X map-equiv-Σ-extension-cauchy-composition-unit-subuniverse (p , H) = H map-inv-equiv-Σ-extension-cauchy-composition-unit-subuniverse : unit-species-types X → Σ-extension-species-subuniverse P ( subuniverse-global-subuniverse Q l1) ( cauchy-composition-unit-species-subuniverse P Q C4) ( X) pr1 (map-inv-equiv-Σ-extension-cauchy-composition-unit-subuniverse H) = is-in-subuniverse-equiv P (equiv-is-contr is-contr-raise-unit H) C3 pr2 (map-inv-equiv-Σ-extension-cauchy-composition-unit-subuniverse H) = H issec-map-inv-equiv-Σ-extension-cauchy-composition-unit-subuniverse : ( map-equiv-Σ-extension-cauchy-composition-unit-subuniverse ∘ map-inv-equiv-Σ-extension-cauchy-composition-unit-subuniverse) ~ id issec-map-inv-equiv-Σ-extension-cauchy-composition-unit-subuniverse = refl-htpy isretr-map-inv-equiv-Σ-extension-cauchy-composition-unit-subuniverse : ( map-inv-equiv-Σ-extension-cauchy-composition-unit-subuniverse ∘ map-equiv-Σ-extension-cauchy-composition-unit-subuniverse) ~ id isretr-map-inv-equiv-Σ-extension-cauchy-composition-unit-subuniverse x = eq-pair ( eq-is-prop (is-prop-type-Prop (P X))) ( eq-is-prop is-property-is-contr) is-equiv-map-equiv-Σ-extension-cauchy-composition-unit-subuniverse : is-equiv map-equiv-Σ-extension-cauchy-composition-unit-subuniverse is-equiv-map-equiv-Σ-extension-cauchy-composition-unit-subuniverse = is-equiv-has-inverse map-inv-equiv-Σ-extension-cauchy-composition-unit-subuniverse issec-map-inv-equiv-Σ-extension-cauchy-composition-unit-subuniverse isretr-map-inv-equiv-Σ-extension-cauchy-composition-unit-subuniverse equiv-Σ-extension-cauchy-composition-unit-subuniverse : Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l1) ( cauchy-composition-unit-species-subuniverse P Q C4) ( X) ≃ unit-species-types X pr1 equiv-Σ-extension-cauchy-composition-unit-subuniverse = map-equiv-Σ-extension-cauchy-composition-unit-subuniverse pr2 equiv-Σ-extension-cauchy-composition-unit-subuniverse = is-equiv-map-equiv-Σ-extension-cauchy-composition-unit-subuniverse module _ { l1 l2 l3 : Level} ( P : subuniverse l1 l2) ( Q : global-subuniverse id) ( C1 : is-closed-under-cauchy-composition-species-subuniverse P Q) ( C2 : is-closed-under-Σ-subuniverse P) ( C3 : is-in-subuniverse P (raise-unit l1)) ( C4 : is-closed-under-is-contr-subuniverses P ( subuniverse-global-subuniverse Q l1)) ( S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) where equiv-left-unit-law-cauchy-composition-species-subuniverse : ( X : type-subuniverse P) → inclusion-subuniverse ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3)) ( cauchy-composition-species-subuniverse P Q C1 C2 ( cauchy-composition-unit-species-subuniverse P Q C4) ( S) ( X)) ≃ inclusion-subuniverse (subuniverse-global-subuniverse Q l3) (S X) equiv-left-unit-law-cauchy-composition-species-subuniverse X = ( ( inv-equiv ( equiv-Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S) ( X))) ∘e ( ( left-unit-law-cauchy-composition-species-types ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S)) ( inclusion-subuniverse P X)) ∘e ( ( equiv-tot ( λ D → equiv-prod ( equiv-Σ-extension-cauchy-composition-unit-subuniverse ( P) ( Q) ( C3) ( C4) ( indexing-type-Relaxed-Σ-Decomposition D)) ( id-equiv))) ∘e ( ( preserves-cauchy-composition-Σ-extension-species-subuniverse ( P) ( Q) ( C1) ( C2) ( cauchy-composition-unit-species-subuniverse P Q C4) ( S) ( inclusion-subuniverse P X)) ∘e ( ( equiv-Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3)) ( cauchy-composition-species-subuniverse ( P) ( Q) ( C1) ( C2) ( cauchy-composition-unit-species-subuniverse P Q C4) ( S)) ( X))))))) equiv-right-unit-law-cauchy-composition-species-subuniverse : ( X : type-subuniverse P) → inclusion-subuniverse ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3)) ( cauchy-composition-species-subuniverse P Q C1 C2 S ( cauchy-composition-unit-species-subuniverse P Q C4) ( X)) ≃ inclusion-subuniverse (subuniverse-global-subuniverse Q l3) (S X) equiv-right-unit-law-cauchy-composition-species-subuniverse X = ( inv-equiv ( equiv-Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S) ( X))) ∘e ( ( right-unit-law-cauchy-composition-species-types ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S)) ( inclusion-subuniverse P X)) ∘e ( ( equiv-tot ( λ D → equiv-prod ( id-equiv) ( equiv-map-Π ( λ x → equiv-Σ-extension-cauchy-composition-unit-subuniverse ( P) ( Q) ( C3) ( C4) ( cotype-Relaxed-Σ-Decomposition D x))))) ∘e ( ( preserves-cauchy-composition-Σ-extension-species-subuniverse ( P) ( Q) ( C1) ( C2) ( S) ( cauchy-composition-unit-species-subuniverse P Q C4) ( inclusion-subuniverse P X)) ∘e ( ( equiv-Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3)) ( cauchy-composition-species-subuniverse P Q C1 C2 S ( cauchy-composition-unit-species-subuniverse P Q C4)) ( X))))))
Associativity of composition of species of types in subuniverse
module _ { l1 l2 l3 l4 l5 : Level} ( P : subuniverse l1 l2) ( Q : global-subuniverse id) ( C1 : is-closed-under-cauchy-composition-species-subuniverse P Q) ( C2 : is-closed-under-Σ-subuniverse P) ( S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) ( T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) ( U : species-subuniverse P (subuniverse-global-subuniverse Q l5)) where equiv-associative-cauchy-composition-species-subuniverse : (X : type-subuniverse P) → inclusion-subuniverse ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5)) ( cauchy-composition-species-subuniverse P Q C1 C2 S ( cauchy-composition-species-subuniverse P Q C1 C2 T U) ( X)) ≃ inclusion-subuniverse ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5)) ( cauchy-composition-species-subuniverse P Q C1 C2 ( cauchy-composition-species-subuniverse P Q C1 C2 S T) ( U) ( X)) equiv-associative-cauchy-composition-species-subuniverse X = ( inv-equiv ( equiv-Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5)) ( cauchy-composition-species-subuniverse P Q C1 C2 ( cauchy-composition-species-subuniverse P Q C1 C2 S T) ( U)) ( X))) ∘e ( ( inv-equiv ( preserves-cauchy-composition-Σ-extension-species-subuniverse P Q C1 C2 ( cauchy-composition-species-subuniverse P Q C1 C2 S T) ( U) ( inclusion-subuniverse P X))) ∘e ( ( equiv-tot ( λ D → equiv-prod ( inv-equiv ( preserves-cauchy-composition-Σ-extension-species-subuniverse ( P) ( Q) ( C1) ( C2) ( S) ( T) ( indexing-type-Relaxed-Σ-Decomposition D))) ( id-equiv))) ∘e ( ( equiv-associative-cauchy-composition-species-types ( Σ-extension-species-subuniverse P ( subuniverse-global-subuniverse Q l3) ( S)) ( Σ-extension-species-subuniverse P ( subuniverse-global-subuniverse Q l4) ( T)) ( Σ-extension-species-subuniverse P ( subuniverse-global-subuniverse Q l5) ( U)) ( inclusion-subuniverse P X)) ∘e ( equiv-tot ( λ D → equiv-prod ( id-equiv) ( equiv-Π ( λ y → cauchy-composition-species-types ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( T)) ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l5) ( U)) ( cotype-Relaxed-Σ-Decomposition D y)) ( id-equiv) ( λ y → preserves-cauchy-composition-Σ-extension-species-subuniverse ( P) ( Q) ( C1) ( C2) ( T) ( U) ( cotype-Relaxed-Σ-Decomposition D y)))) ∘e ( ( preserves-cauchy-composition-Σ-extension-species-subuniverse ( P) ( Q) ( C1) ( C2) ( S) ( cauchy-composition-species-subuniverse P Q C1 C2 T U) ( inclusion-subuniverse P X)) ∘e ( equiv-Σ-extension-species-subuniverse P ( subuniverse-global-subuniverse Q ( lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5)) ( cauchy-composition-species-subuniverse P Q C1 C2 S ( cauchy-composition-species-subuniverse P Q C1 C2 T U)) ( X)))))))