Order preserving maps between large preorders
module order-theory.order-preserving-maps-large-preorders where
Idea
An order preserving map between large preorders from P
to Q
consists of a
map
f : type-Large-Preorder P l1 → type-Large-Preorder Q (γ l1)
for each universe level l1
, such that x ≤ y
implies f x ≤ f y
for any two
elements x y : P
.
Definition
module _ {αP αQ : Level → Level} {βP βQ : Level → Level → Level} (γ : Level → Level) (P : Large-Preorder αP βP) (Q : Large-Preorder αQ βQ) where record hom-Large-Preorder : UUω where constructor make-hom-Large-Preorder field map-hom-Large-Preorder : {l1 : Level} → type-Large-Preorder P l1 → type-Large-Preorder Q (γ l1) preserves-order-hom-Large-Preorder : {l1 l2 : Level} (x : type-Large-Preorder P l1) (y : type-Large-Preorder P l2) → leq-Large-Preorder P x y → leq-Large-Preorder Q ( map-hom-Large-Preorder x) ( map-hom-Large-Preorder y) open hom-Large-Preorder public