Binary equivalences on unordered pairs of types
module foundation.binary-equivalences-unordered-pairs-of-types where
Imports
open import foundation.binary-operations-unordered-pairs-of-types open import foundation.products-unordered-pairs-of-types open import foundation.unordered-pairs open import foundation-core.equivalences open import foundation-core.functions open import foundation-core.universe-levels
Idea
A binary operation f : ((i : I) → A i) → B
is a binary equivalence if for each
i : I
and each x : A i
the map f ∘ pair x : A (swap i) → B
is an
equivalence.
Definition
is-binary-equiv-unordered-pair-types : {l1 l2 : Level} (A : unordered-pair (UU l1)) {B : UU l2} (f : binary-operation-unordered-pair-types A B) → UU (l1 ⊔ l2) is-binary-equiv-unordered-pair-types A f = (i : type-unordered-pair A) (x : element-unordered-pair A i) → is-equiv (f ∘ pair-product-unordered-pair-types A i x)