Propositions
module foundation-core.propositions where
Imports
open import foundation-core.cartesian-product-types open import foundation-core.contractible-types open import foundation-core.dependent-pair-types open import foundation-core.equality-dependent-pair-types open import foundation-core.equivalences open import foundation-core.function-extensionality open import foundation-core.functions open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.universe-levels
Idea
A type is considered to be a proposition if its identity types are contractible. This condition is equivalent to the condition that it has up to identification at most one element.
Definition
is-prop : {l : Level} (A : UU l) → UU l is-prop A = (x y : A) → is-contr (x = y) Prop : (l : Level) → UU (lsuc l) Prop l = Σ (UU l) is-prop module _ {l : Level} where type-Prop : Prop l → UU l type-Prop P = pr1 P abstract is-prop-type-Prop : (P : Prop l) → is-prop (type-Prop P) is-prop-type-Prop P = pr2 P
Examples
We prove here only that any contractible type is a proposition. The fact that the empty type and the unit type are propositions can be found in
foundation.empty-types
foundation.unit-type
Properties
To show that a type is a proposition, we may assume it is inhabited
abstract is-prop-is-inhabited : {l1 : Level} {X : UU l1} → (X → is-prop X) → is-prop X is-prop-is-inhabited f x y = f x x y
Equivalent characterizations of propositions
module _ {l : Level} (A : UU l) where all-elements-equal : UU l all-elements-equal = (x y : A) → x = y is-proof-irrelevant : UU l is-proof-irrelevant = A → is-contr A module _ {l : Level} {A : UU l} where abstract is-prop-all-elements-equal : all-elements-equal A → is-prop A pr1 (is-prop-all-elements-equal H x y) = (inv (H x x)) ∙ (H x y) pr2 (is-prop-all-elements-equal H x .x) refl = left-inv (H x x) abstract eq-is-prop' : is-prop A → all-elements-equal A eq-is-prop' H x y = pr1 (H x y) abstract eq-is-prop : is-prop A → {x y : A} → x = y eq-is-prop H {x} {y} = eq-is-prop' H x y abstract is-proof-irrelevant-all-elements-equal : all-elements-equal A → is-proof-irrelevant A pr1 (is-proof-irrelevant-all-elements-equal H a) = a pr2 (is-proof-irrelevant-all-elements-equal H a) = H a abstract is-proof-irrelevant-is-prop : is-prop A → is-proof-irrelevant A is-proof-irrelevant-is-prop = is-proof-irrelevant-all-elements-equal ∘ eq-is-prop' abstract is-prop-is-proof-irrelevant : is-proof-irrelevant A → is-prop A is-prop-is-proof-irrelevant H x y = is-prop-is-contr (H x) x y abstract eq-is-proof-irrelevant : is-proof-irrelevant A → all-elements-equal A eq-is-proof-irrelevant = eq-is-prop' ∘ is-prop-is-proof-irrelevant
A map between propositions is an equivalence if there is a map in the reverse direction
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-equiv-is-prop : is-prop A → is-prop B → {f : A → B} → (B → A) → is-equiv f is-equiv-is-prop is-prop-A is-prop-B {f} g = is-equiv-has-inverse ( g) ( λ y → eq-is-prop is-prop-B) ( λ x → eq-is-prop is-prop-A) abstract equiv-prop : is-prop A → is-prop B → (A → B) → (B → A) → A ≃ B pr1 (equiv-prop is-prop-A is-prop-B f g) = f pr2 (equiv-prop is-prop-A is-prop-B f g) = is-equiv-is-prop is-prop-A is-prop-B g
Propositions are closed under equivalences
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-prop-is-equiv : {f : A → B} → is-equiv f → is-prop B → is-prop A is-prop-is-equiv {f} E H = is-prop-is-proof-irrelevant ( λ a → is-contr-is-equiv B f E (is-proof-irrelevant-is-prop H (f a))) abstract is-prop-equiv : A ≃ B → is-prop B → is-prop A is-prop-equiv (pair f is-equiv-f) = is-prop-is-equiv is-equiv-f module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-prop-is-equiv' : {f : A → B} → is-equiv f → is-prop A → is-prop B is-prop-is-equiv' E H = is-prop-is-equiv (is-equiv-map-inv-is-equiv E) H abstract is-prop-equiv' : A ≃ B → is-prop A → is-prop B is-prop-equiv' (pair f is-equiv-f) = is-prop-is-equiv' is-equiv-f
Propositions are closed under dependent pair types
abstract is-prop-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-prop A → ((x : A) → is-prop (B x)) → is-prop (Σ A B) is-prop-Σ H K x y = is-contr-equiv' ( Eq-Σ x y) ( equiv-eq-pair-Σ x y) ( is-contr-Σ' ( H (pr1 x) (pr1 y)) ( λ p → K (pr1 y) (tr _ p (pr2 x)) (pr2 y))) Σ-Prop : {l1 l2 : Level} (P : Prop l1) (Q : type-Prop P → Prop l2) → Prop (l1 ⊔ l2) pr1 (Σ-Prop P Q) = Σ (type-Prop P) (λ p → type-Prop (Q p)) pr2 (Σ-Prop P Q) = is-prop-Σ ( is-prop-type-Prop P) ( λ p → is-prop-type-Prop (Q p))
Propositions are closed under cartesian product types
abstract is-prop-prod : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-prop A → is-prop B → is-prop (A × B) is-prop-prod H K = is-prop-Σ H (λ x → K) prod-Prop : {l1 l2 : Level} → Prop l1 → Prop l2 → Prop (l1 ⊔ l2) pr1 (prod-Prop P Q) = type-Prop P × type-Prop Q pr2 (prod-Prop P Q) = is-prop-prod (is-prop-type-Prop P) (is-prop-type-Prop Q)
Products of families of propositions are propositions
abstract is-prop-Π : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → ((x : A) → is-prop (B x)) → is-prop ((x : A) → B x) is-prop-Π H = is-prop-is-proof-irrelevant ( λ f → is-contr-Π (λ x → is-proof-irrelevant-is-prop (H x) (f x))) type-Π-Prop : {l1 l2 : Level} (A : UU l1) (P : A → Prop l2) → UU (l1 ⊔ l2) type-Π-Prop A P = (x : A) → type-Prop (P x) is-prop-type-Π-Prop : {l1 l2 : Level} (A : UU l1) (P : A → Prop l2) → is-prop (type-Π-Prop A P) is-prop-type-Π-Prop A P = is-prop-Π (λ x → is-prop-type-Prop (P x)) Π-Prop : {l1 l2 : Level} (A : UU l1) → (A → Prop l2) → Prop (l1 ⊔ l2) pr1 (Π-Prop A P) = type-Π-Prop A P pr2 (Π-Prop A P) = is-prop-type-Π-Prop A P
We repeat the above for implicit Π-types.
abstract is-prop-Π' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → ((x : A) → is-prop (B x)) → is-prop ({x : A} → B x) is-prop-Π' {l1} {l2} {A} {B} H = is-prop-equiv ( pair ( λ f x → f {x}) ( is-equiv-has-inverse ( λ g {x} → g x) ( refl-htpy) ( refl-htpy))) ( is-prop-Π H) type-Π-Prop' : {l1 l2 : Level} (A : UU l1) (P : A → Prop l2) → UU (l1 ⊔ l2) type-Π-Prop' A P = {x : A} → type-Prop (P x) is-prop-type-Π-Prop' : {l1 l2 : Level} (A : UU l1) (P : A → Prop l2) → is-prop (type-Π-Prop' A P) is-prop-type-Π-Prop' A P = is-prop-Π' (λ x → is-prop-type-Prop (P x)) Π-Prop' : {l1 l2 : Level} (A : UU l1) (P : A → Prop l2) → Prop (l1 ⊔ l2) pr1 (Π-Prop' A P) = type-Π-Prop' A P pr2 (Π-Prop' A P) = is-prop-Π' (λ x → is-prop-type-Prop (P x))
The type of functions into a proposition is a proposition
abstract is-prop-function-type : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-prop B → is-prop (A → B) is-prop-function-type H = is-prop-Π (λ x → H) type-function-Prop : {l1 l2 : Level} → UU l1 → Prop l2 → UU (l1 ⊔ l2) type-function-Prop A P = A → type-Prop P is-prop-type-function-Prop : {l1 l2 : Level} (A : UU l1) (P : Prop l2) → is-prop (type-function-Prop A P) is-prop-type-function-Prop A P = is-prop-function-type (is-prop-type-Prop P) function-Prop : {l1 l2 : Level} → UU l1 → Prop l2 → Prop (l1 ⊔ l2) pr1 (function-Prop A P) = type-function-Prop A P pr2 (function-Prop A P) = is-prop-type-function-Prop A P type-hom-Prop : { l1 l2 : Level} (P : Prop l1) (Q : Prop l2) → UU (l1 ⊔ l2) type-hom-Prop P Q = type-function-Prop (type-Prop P) Q is-prop-type-hom-Prop : {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) → is-prop (type-hom-Prop P Q) is-prop-type-hom-Prop P Q = is-prop-type-function-Prop (type-Prop P) Q hom-Prop : { l1 l2 : Level} → Prop l1 → Prop l2 → Prop (l1 ⊔ l2) pr1 (hom-Prop P Q) = type-hom-Prop P Q pr2 (hom-Prop P Q) = is-prop-type-hom-Prop P Q implication-Prop : {l1 l2 : Level} → Prop l1 → Prop l2 → Prop (l1 ⊔ l2) implication-Prop P Q = hom-Prop P Q type-implication-Prop : {l1 l2 : Level} → Prop l1 → Prop l2 → UU (l1 ⊔ l2) type-implication-Prop P Q = type-hom-Prop P Q
The type of equivalences between two propositions is a proposition
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-prop-equiv-is-prop : is-prop A → is-prop B → is-prop (A ≃ B) is-prop-equiv-is-prop H K = is-prop-Σ ( is-prop-function-type K) ( λ f → is-prop-prod ( is-prop-Σ ( is-prop-function-type H) ( λ g → is-prop-is-contr (is-contr-Π (λ y → K (f (g y)) y)))) ( is-prop-Σ ( is-prop-function-type H) ( λ h → is-prop-is-contr (is-contr-Π (λ x → H (h (f x)) x))))) type-equiv-Prop : { l1 l2 : Level} (P : Prop l1) (Q : Prop l2) → UU (l1 ⊔ l2) type-equiv-Prop P Q = (type-Prop P) ≃ (type-Prop Q) abstract is-prop-type-equiv-Prop : {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) → is-prop (type-equiv-Prop P Q) is-prop-type-equiv-Prop P Q = is-prop-equiv-is-prop (is-prop-type-Prop P) (is-prop-type-Prop Q) equiv-Prop : { l1 l2 : Level} → Prop l1 → Prop l2 → Prop (l1 ⊔ l2) pr1 (equiv-Prop P Q) = type-equiv-Prop P Q pr2 (equiv-Prop P Q) = is-prop-type-equiv-Prop P Q
A type is a proposition if and only if the type of its endomaps is contractible
abstract is-prop-is-contr-endomaps : {l : Level} (P : UU l) → is-contr (P → P) → is-prop P is-prop-is-contr-endomaps P H = is-prop-all-elements-equal (λ x → htpy-eq (eq-is-contr H)) abstract is-contr-endomaps-is-prop : {l : Level} (P : UU l) → is-prop P → is-contr (P → P) is-contr-endomaps-is-prop P is-prop-P = is-proof-irrelevant-is-prop (is-prop-function-type is-prop-P) id
Being a proposition is a proposition
abstract is-prop-is-prop : {l : Level} (A : UU l) → is-prop (is-prop A) is-prop-is-prop A = is-prop-Π (λ x → is-prop-Π (λ y → is-property-is-contr)) is-prop-Prop : {l : Level} (A : UU l) → Prop l pr1 (is-prop-Prop A) = is-prop A pr2 (is-prop-Prop A) = is-prop-is-prop A