Commuting triangles of maps
{-# OPTIONS --safe #-} module foundation-core.commuting-triangles-of-maps where
Imports
open import foundation-core.functions open import foundation-core.homotopies open import foundation-core.universe-levels
Idea
A triangle of maps
A ----> B
\ /
\ /
V V
X
is said to commute if there is a homotopy between the map on the left and the composite map.
Definition
Commuting triangles of maps
module _ {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3} where coherence-triangle-maps : (left : A → X) (right : B → X) (top : A → B) → UU (l1 ⊔ l2) coherence-triangle-maps left right top = left ~ (right ∘ top) coherence-triangle-maps' : (left : A → X) (right : B → X) (top : A → B) → UU (l1 ⊔ l2) coherence-triangle-maps' left right top = (right ∘ top) ~ left
Concatenation of commuting triangles of maps
module _ {l1 l2 l3 l4 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (f : A → X) (g : B → X) (h : C → X) (i : A → B) (j : B → C) where concat-coherence-triangle-maps : coherence-triangle-maps f g i → coherence-triangle-maps g h j → coherence-triangle-maps f h (j ∘ i) concat-coherence-triangle-maps H K = H ∙h (K ·r i)