The elementhood relation on W-types
module trees.elementhood-relation-w-types where
Imports
open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.identity-types open import foundation.universe-levels open import trees.elementhood-relation-coalgebras-polynomial-endofunctors open import trees.w-types
Idea
We say that a tree S
is an element of a tree tree-𝕎 x α
if S
can be
equipped with an element y : B x
such that α y = S
.
Definition
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where _∈-𝕎_ : 𝕎 A B → 𝕎 A B → UU (l1 ⊔ l2) x ∈-𝕎 y = x ∈ y in-coalgebra 𝕎-Coalg A B _∉-𝕎_ : 𝕎 A B → 𝕎 A B → UU (l1 ⊔ l2) x ∉-𝕎 y = is-empty (x ∈-𝕎 y)
Properties
irreflexive-∈-𝕎 : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (x : 𝕎 A B) → x ∉-𝕎 x irreflexive-∈-𝕎 {A = A} {B = B} (tree-𝕎 x α) (pair y p) = irreflexive-∈-𝕎 (α y) (tr (λ z → (α y) ∈-𝕎 z) (inv p) (pair y refl))