The binomial theorem for the natural numbers
module elementary-number-theory.binomial-theorem-natural-numbers where
Imports
open import commutative-algebra.binomial-theorem-commutative-semirings open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.commutative-semiring-of-natural-numbers open import elementary-number-theory.distance-natural-numbers open import elementary-number-theory.exponentiation-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.homotopies open import foundation.identity-types open import linear-algebra.vectors open import univalent-combinatorics.standard-finite-types
Idea
The binomial theorem for natural numbers asserts that for any two natural
numbers x
and y
and any natural number n
, we have
(x + y)ⁿ = ∑_{0 ≤ i < n+1} (n choose i) xⁱ yⁿ⁻ⁱ.
Definitions
Binomial sums
binomial-sum-ℕ : (n : ℕ) (f : functional-vec ℕ (succ-ℕ n)) → ℕ binomial-sum-ℕ = binomial-sum-Commutative-Semiring ℕ-Commutative-Semiring
Properties
Binomial sums of one and two elements
binomial-sum-one-element-ℕ : (f : functional-vec ℕ 1) → binomial-sum-ℕ 0 f = head-functional-vec 0 f binomial-sum-one-element-ℕ = binomial-sum-one-element-Commutative-Semiring ℕ-Commutative-Semiring binomial-sum-two-elements-ℕ : (f : functional-vec ℕ 2) → binomial-sum-ℕ 1 f = (f (zero-Fin 1)) +ℕ (f (one-Fin 1)) binomial-sum-two-elements-ℕ = binomial-sum-two-elements-Commutative-Semiring ℕ-Commutative-Semiring
Binomial sums are homotopy invariant
htpy-binomial-sum-ℕ : (n : ℕ) {f g : functional-vec ℕ (succ-ℕ n)} → (f ~ g) → binomial-sum-ℕ n f = binomial-sum-ℕ n g htpy-binomial-sum-ℕ = htpy-binomial-sum-Commutative-Semiring ℕ-Commutative-Semiring
Multiplication distributes over sums
left-distributive-mul-binomial-sum-ℕ : (n : ℕ) (x : ℕ) (f : functional-vec ℕ (succ-ℕ n)) → x *ℕ (binomial-sum-ℕ n f) = binomial-sum-ℕ n (λ i → x *ℕ (f i)) left-distributive-mul-binomial-sum-ℕ = left-distributive-mul-binomial-sum-Commutative-Semiring ℕ-Commutative-Semiring right-distributive-mul-binomial-sum-ℕ : (n : ℕ) (f : functional-vec ℕ (succ-ℕ n)) (x : ℕ) → (binomial-sum-ℕ n f) *ℕ x = binomial-sum-ℕ n (λ i → (f i) *ℕ x) right-distributive-mul-binomial-sum-ℕ = right-distributive-mul-binomial-sum-Commutative-Semiring ℕ-Commutative-Semiring
Theorem
Binomial theorem for the natural numbers
binomial-theorem-ℕ : (n : ℕ) (x y : ℕ) → power-ℕ n (x +ℕ y) = binomial-sum-ℕ n ( λ i → ( power-ℕ (nat-Fin (succ-ℕ n) i) x) *ℕ ( power-ℕ (dist-ℕ (nat-Fin (succ-ℕ n) i) n) y)) binomial-theorem-ℕ = binomial-theorem-Commutative-Semiring ℕ-Commutative-Semiring