The greatest common divisor of natural numbers
module elementary-number-theory.greatest-common-divisor-natural-numbers where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.decidable-types open import elementary-number-theory.distance-natural-numbers open import elementary-number-theory.divisibility-natural-numbers open import elementary-number-theory.equality-natural-numbers open import elementary-number-theory.euclidean-division-natural-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.lower-bounds-natural-numbers open import elementary-number-theory.modular-arithmetic-standard-finite-types open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import elementary-number-theory.well-ordering-principle-natural-numbers open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.functoriality-cartesian-product-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.universe-levels
Idea
The greatest common divisor of two natural numbers x
and y
is a number
gcd x y
such that any natural number d : ℕ
is a common divisor of x
and
y
if and only if it is a divisor of gcd x y
.
Definition
Common divisors
is-common-divisor-ℕ : (a b x : ℕ) → UU lzero is-common-divisor-ℕ a b x = (div-ℕ x a) × (div-ℕ x b)
Greatest common divisors
is-gcd-ℕ : (a b d : ℕ) → UU lzero is-gcd-ℕ a b d = (x : ℕ) → (is-common-divisor-ℕ a b x) ↔ (div-ℕ x d)
The predicate of being a multiple of the greatest common divisor
is-multiple-of-gcd-ℕ : (a b n : ℕ) → UU lzero is-multiple-of-gcd-ℕ a b n = is-nonzero-ℕ (a +ℕ b) → (is-nonzero-ℕ n) × ((x : ℕ) → is-common-divisor-ℕ a b x → div-ℕ x n)
Properties
Reflexivity for common divisors
refl-is-common-divisor-ℕ : (x : ℕ) → is-common-divisor-ℕ x x x pr1 (refl-is-common-divisor-ℕ x) = refl-div-ℕ x pr2 (refl-is-common-divisor-ℕ x) = refl-div-ℕ x
Being a common divisor is decidable
is-decidable-is-common-divisor-ℕ : (a b : ℕ) → is-decidable-fam (is-common-divisor-ℕ a b) is-decidable-is-common-divisor-ℕ a b x = is-decidable-prod ( is-decidable-div-ℕ x a) ( is-decidable-div-ℕ x b)
Any greatest common divisor is a common divisor
is-common-divisor-is-gcd-ℕ : (a b d : ℕ) → is-gcd-ℕ a b d → is-common-divisor-ℕ a b d is-common-divisor-is-gcd-ℕ a b d H = pr2 (H d) (refl-div-ℕ d)
Uniqueness of greatest common divisors
uniqueness-is-gcd-ℕ : (a b d d' : ℕ) → is-gcd-ℕ a b d → is-gcd-ℕ a b d' → d = d' uniqueness-is-gcd-ℕ a b d d' H H' = antisymmetric-div-ℕ d d' ( pr1 (H' d) (is-common-divisor-is-gcd-ℕ a b d H)) ( pr1 (H d') (is-common-divisor-is-gcd-ℕ a b d' H'))
If d
is a common divisor of a
and b
, and a + b ≠ 0
, then d ≤ a + b
leq-sum-is-common-divisor-ℕ' : (a b d : ℕ) → is-successor-ℕ (a +ℕ b) → is-common-divisor-ℕ a b d → leq-ℕ d (a +ℕ b) leq-sum-is-common-divisor-ℕ' a zero-ℕ d (pair k p) H = concatenate-leq-eq-ℕ d ( leq-div-succ-ℕ d k (concatenate-div-eq-ℕ (pr1 H) p)) ( inv p) leq-sum-is-common-divisor-ℕ' a (succ-ℕ b) d (pair k p) H = leq-div-succ-ℕ d (a +ℕ b) (div-add-ℕ d a (succ-ℕ b) (pr1 H) (pr2 H)) leq-sum-is-common-divisor-ℕ : (a b d : ℕ) → is-nonzero-ℕ (a +ℕ b) → is-common-divisor-ℕ a b d → leq-ℕ d (a +ℕ b) leq-sum-is-common-divisor-ℕ a b d H = leq-sum-is-common-divisor-ℕ' a b d (is-successor-is-nonzero-ℕ H)
Being a multiple of the greatest common divisor is decidable
is-decidable-is-multiple-of-gcd-ℕ : (a b : ℕ) → is-decidable-fam (is-multiple-of-gcd-ℕ a b) is-decidable-is-multiple-of-gcd-ℕ a b n = is-decidable-function-type' ( is-decidable-neg (is-decidable-is-zero-ℕ (a +ℕ b))) ( λ np → is-decidable-prod ( is-decidable-neg (is-decidable-is-zero-ℕ n)) ( is-decidable-bounded-Π-ℕ ( is-common-divisor-ℕ a b) ( λ x → div-ℕ x n) ( is-decidable-is-common-divisor-ℕ a b) ( λ x → is-decidable-div-ℕ x n) ( a +ℕ b) ( λ x → leq-sum-is-common-divisor-ℕ a b x np)))
The sum of a
and b
is a multiple of the greatest common divisor of a
and b
sum-is-multiple-of-gcd-ℕ : (a b : ℕ) → is-multiple-of-gcd-ℕ a b (a +ℕ b) pr1 (sum-is-multiple-of-gcd-ℕ a b np) = np pr2 (sum-is-multiple-of-gcd-ℕ a b np) x H = div-add-ℕ x a b (pr1 H) (pr2 H)
The greatest common divisor exists
abstract GCD-ℕ : (a b : ℕ) → minimal-element-ℕ (is-multiple-of-gcd-ℕ a b) GCD-ℕ a b = well-ordering-principle-ℕ ( is-multiple-of-gcd-ℕ a b) ( is-decidable-is-multiple-of-gcd-ℕ a b) ( pair (a +ℕ b) (sum-is-multiple-of-gcd-ℕ a b)) gcd-ℕ : ℕ → ℕ → ℕ gcd-ℕ a b = pr1 (GCD-ℕ a b) is-multiple-of-gcd-gcd-ℕ : (a b : ℕ) → is-multiple-of-gcd-ℕ a b (gcd-ℕ a b) is-multiple-of-gcd-gcd-ℕ a b = pr1 (pr2 (GCD-ℕ a b)) is-lower-bound-gcd-ℕ : (a b : ℕ) → is-lower-bound-ℕ (is-multiple-of-gcd-ℕ a b) (gcd-ℕ a b) is-lower-bound-gcd-ℕ a b = pr2 (pr2 (GCD-ℕ a b))
a + b = 0
if and only if gcd a b = 0
is-zero-gcd-ℕ : (a b : ℕ) → is-zero-ℕ (a +ℕ b) → is-zero-ℕ (gcd-ℕ a b) is-zero-gcd-ℕ a b p = is-zero-leq-zero-ℕ ( gcd-ℕ a b) ( concatenate-leq-eq-ℕ ( gcd-ℕ a b) ( is-lower-bound-gcd-ℕ a b ( a +ℕ b) ( sum-is-multiple-of-gcd-ℕ a b)) ( p)) is-zero-gcd-zero-zero-ℕ : is-zero-ℕ (gcd-ℕ zero-ℕ zero-ℕ) is-zero-gcd-zero-zero-ℕ = is-zero-gcd-ℕ zero-ℕ zero-ℕ refl is-zero-add-is-zero-gcd-ℕ : (a b : ℕ) → is-zero-ℕ (gcd-ℕ a b) → is-zero-ℕ (a +ℕ b) is-zero-add-is-zero-gcd-ℕ a b H = double-negation-elim-is-decidable ( is-decidable-is-zero-ℕ (a +ℕ b)) ( λ f → pr1 (is-multiple-of-gcd-gcd-ℕ a b f) H)
If at least one of a
and b
is nonzero, then their gcd is nonzero
is-nonzero-gcd-ℕ : (a b : ℕ) → is-nonzero-ℕ (a +ℕ b) → is-nonzero-ℕ (gcd-ℕ a b) is-nonzero-gcd-ℕ a b ne = pr1 (is-multiple-of-gcd-gcd-ℕ a b ne) is-successor-gcd-ℕ : (a b : ℕ) → is-nonzero-ℕ (a +ℕ b) → is-successor-ℕ (gcd-ℕ a b) is-successor-gcd-ℕ a b ne = is-successor-is-nonzero-ℕ (is-nonzero-gcd-ℕ a b ne)
Any common divisor is also a divisor of the greatest common divisor
div-gcd-is-common-divisor-ℕ : (a b x : ℕ) → is-common-divisor-ℕ a b x → div-ℕ x (gcd-ℕ a b) div-gcd-is-common-divisor-ℕ a b x H with is-decidable-is-zero-ℕ (a +ℕ b) ... | inl p = concatenate-div-eq-ℕ (div-zero-ℕ x) (inv (is-zero-gcd-ℕ a b p)) ... | inr np = pr2 (is-multiple-of-gcd-gcd-ℕ a b np) x H
If every common divisor divides a number r < gcd a b
, then r = 0
.
is-zero-is-common-divisor-le-gcd-ℕ : (a b r : ℕ) → le-ℕ r (gcd-ℕ a b) → ((x : ℕ) → is-common-divisor-ℕ a b x → div-ℕ x r) → is-zero-ℕ r is-zero-is-common-divisor-le-gcd-ℕ a b r l d with is-decidable-is-zero-ℕ r ... | inl H = H ... | inr x = ex-falso ( contradiction-le-ℕ r (gcd-ℕ a b) l ( is-lower-bound-gcd-ℕ a b r (λ np → pair x d)))
Any divisor of gcd a b
is a common divisor of a
and b
div-left-factor-div-gcd-ℕ : (a b x : ℕ) → div-ℕ x (gcd-ℕ a b) → div-ℕ x a div-left-factor-div-gcd-ℕ a b x d with is-decidable-is-zero-ℕ (a +ℕ b) ... | inl p = concatenate-div-eq-ℕ (div-zero-ℕ x) (inv (is-zero-left-is-zero-add-ℕ a b p)) ... | inr np = transitive-div-ℕ x (gcd-ℕ a b) a d ( pair q ( ( ( α) ∙ ( ap ( dist-ℕ a) ( is-zero-is-common-divisor-le-gcd-ℕ a b r B ( λ x H → div-right-summand-ℕ x (q *ℕ (gcd-ℕ a b)) r ( div-mul-ℕ q x (gcd-ℕ a b) ( div-gcd-is-common-divisor-ℕ a b x H)) ( concatenate-div-eq-ℕ (pr1 H) (inv β)))))) ∙ ( right-unit-law-dist-ℕ a))) where r = remainder-euclidean-division-ℕ (gcd-ℕ a b) a q = quotient-euclidean-division-ℕ (gcd-ℕ a b) a α = eq-quotient-euclidean-division-ℕ (gcd-ℕ a b) a B = strict-upper-bound-remainder-euclidean-division-ℕ (gcd-ℕ a b) a ( is-nonzero-gcd-ℕ a b np) β = eq-euclidean-division-ℕ (gcd-ℕ a b) a div-right-factor-div-gcd-ℕ : (a b x : ℕ) → div-ℕ x (gcd-ℕ a b) → div-ℕ x b div-right-factor-div-gcd-ℕ a b x d with is-decidable-is-zero-ℕ (a +ℕ b) ... | inl p = concatenate-div-eq-ℕ (div-zero-ℕ x) (inv (is-zero-right-is-zero-add-ℕ a b p)) ... | inr np = transitive-div-ℕ x (gcd-ℕ a b) b d ( pair q ( ( α ∙ ( ap ( dist-ℕ b) ( is-zero-is-common-divisor-le-gcd-ℕ a b r B ( λ x H → div-right-summand-ℕ x (q *ℕ (gcd-ℕ a b)) r ( div-mul-ℕ q x (gcd-ℕ a b) ( div-gcd-is-common-divisor-ℕ a b x H)) ( concatenate-div-eq-ℕ (pr2 H) (inv β)))))) ∙ ( right-unit-law-dist-ℕ b))) where r = remainder-euclidean-division-ℕ (gcd-ℕ a b) b q = quotient-euclidean-division-ℕ (gcd-ℕ a b) b α = eq-quotient-euclidean-division-ℕ (gcd-ℕ a b) b B = strict-upper-bound-remainder-euclidean-division-ℕ (gcd-ℕ a b) b ( is-nonzero-gcd-ℕ a b np) β = eq-euclidean-division-ℕ (gcd-ℕ a b) b is-common-divisor-div-gcd-ℕ : (a b x : ℕ) → div-ℕ x (gcd-ℕ a b) → is-common-divisor-ℕ a b x pr1 (is-common-divisor-div-gcd-ℕ a b x d) = div-left-factor-div-gcd-ℕ a b x d pr2 (is-common-divisor-div-gcd-ℕ a b x d) = div-right-factor-div-gcd-ℕ a b x d
The gcd of a
and b
is a common divisor
div-left-factor-gcd-ℕ : (a b : ℕ) → div-ℕ (gcd-ℕ a b) a div-left-factor-gcd-ℕ a b = div-left-factor-div-gcd-ℕ a b (gcd-ℕ a b) (refl-div-ℕ (gcd-ℕ a b)) div-right-factor-gcd-ℕ : (a b : ℕ) → div-ℕ (gcd-ℕ a b) b div-right-factor-gcd-ℕ a b = div-right-factor-div-gcd-ℕ a b (gcd-ℕ a b) (refl-div-ℕ (gcd-ℕ a b)) is-common-divisor-gcd-ℕ : (a b : ℕ) → is-common-divisor-ℕ a b (gcd-ℕ a b) is-common-divisor-gcd-ℕ a b = is-common-divisor-div-gcd-ℕ a b (gcd-ℕ a b) (refl-div-ℕ (gcd-ℕ a b))
The gcd of a
and b
is a greatest common divisor
is-gcd-gcd-ℕ : (a b : ℕ) → is-gcd-ℕ a b (gcd-ℕ a b) pr1 (is-gcd-gcd-ℕ a b x) = div-gcd-is-common-divisor-ℕ a b x pr2 (is-gcd-gcd-ℕ a b x) = is-common-divisor-div-gcd-ℕ a b x
The gcd is commutative
is-commutative-gcd-ℕ : (a b : ℕ) → gcd-ℕ a b = gcd-ℕ b a is-commutative-gcd-ℕ a b = antisymmetric-div-ℕ ( gcd-ℕ a b) ( gcd-ℕ b a) ( pr1 (is-gcd-gcd-ℕ b a (gcd-ℕ a b)) (σ (is-common-divisor-gcd-ℕ a b))) ( pr1 (is-gcd-gcd-ℕ a b (gcd-ℕ b a)) (σ (is-common-divisor-gcd-ℕ b a))) where σ : {A B : UU lzero} → A × B → B × A pr1 (σ (pair x y)) = y pr2 (σ (pair x y)) = x
If d
is a common divisor of a
and b
, then kd
is a common divisor of ka
and kb
.
preserves-is-common-divisor-mul-ℕ : (k a b d : ℕ) → is-common-divisor-ℕ a b d → is-common-divisor-ℕ (k *ℕ a) (k *ℕ b) (k *ℕ d) preserves-is-common-divisor-mul-ℕ k a b d = map-prod ( preserves-div-mul-ℕ k d a) ( preserves-div-mul-ℕ k d b) reflects-is-common-divisor-mul-ℕ : (k a b d : ℕ) → is-nonzero-ℕ k → is-common-divisor-ℕ (k *ℕ a) (k *ℕ b) (k *ℕ d) → is-common-divisor-ℕ a b d reflects-is-common-divisor-mul-ℕ k a b d H = map-prod ( reflects-div-mul-ℕ k d a H) ( reflects-div-mul-ℕ k d b H)
gcd-ℕ 1 b = 1
is-one-is-gcd-one-ℕ : {b x : ℕ} → is-gcd-ℕ 1 b x → is-one-ℕ x is-one-is-gcd-one-ℕ {b} {x} H = is-one-div-one-ℕ x (pr1 (is-common-divisor-is-gcd-ℕ 1 b x H)) is-one-gcd-one-ℕ : (b : ℕ) → is-one-ℕ (gcd-ℕ 1 b) is-one-gcd-one-ℕ b = is-one-is-gcd-one-ℕ (is-gcd-gcd-ℕ 1 b)
gcd-ℕ a 1 = 1
is-one-is-gcd-one-ℕ' : {a x : ℕ} → is-gcd-ℕ a 1 x → is-one-ℕ x is-one-is-gcd-one-ℕ' {a} {x} H = is-one-div-one-ℕ x (pr2 (is-common-divisor-is-gcd-ℕ a 1 x H)) is-one-gcd-one-ℕ' : (a : ℕ) → is-one-ℕ (gcd-ℕ a 1) is-one-gcd-one-ℕ' a = is-one-is-gcd-one-ℕ' (is-gcd-gcd-ℕ a 1)
gcd-ℕ 0 b = b
is-id-is-gcd-zero-ℕ : {b x : ℕ} → gcd-ℕ 0 b = x → x = b is-id-is-gcd-zero-ℕ {b} {x} H = antisymmetric-div-ℕ x b (pr2 (is-common-divisor-is-gcd-ℕ 0 b x (tr (λ t → is-gcd-ℕ 0 b t) H (is-gcd-gcd-ℕ 0 b)))) (tr (λ t → div-ℕ b t) H (div-gcd-is-common-divisor-ℕ 0 b b (pair' (div-zero-ℕ b) (refl-div-ℕ b))))
gcd-ℕ a 0 = a
is-id-is-gcd-zero-ℕ' : {a x : ℕ} → gcd-ℕ a 0 = x → x = a is-id-is-gcd-zero-ℕ' {a} {x} H = is-id-is-gcd-zero-ℕ {a} {x} ((is-commutative-gcd-ℕ 0 a) ∙ H)
Consider a common divisor d
of a
and b
and let e
be a divisor of d
. Then any divisor of d/e
is a common divisor of a/e
and b/e
.
is-common-divisor-quotients-div-quotient-ℕ : {a b d e n : ℕ} → is-nonzero-ℕ e → (H : is-common-divisor-ℕ a b d) (K : div-ℕ e d) → div-ℕ n (quotient-div-ℕ e d K) → (M : is-common-divisor-ℕ a b e) → is-common-divisor-ℕ ( quotient-div-ℕ e a (pr1 M)) ( quotient-div-ℕ e b (pr2 M)) ( n) pr1 (is-common-divisor-quotients-div-quotient-ℕ nz H K L M) = div-quotient-div-div-quotient-div-ℕ nz (pr1 H) K (pr1 M) L pr2 (is-common-divisor-quotients-div-quotient-ℕ nz H K L M) = div-quotient-div-div-quotient-div-ℕ nz (pr2 H) K (pr2 M) L simplify-is-common-divisor-quotient-div-ℕ : {a b d x : ℕ} → is-nonzero-ℕ d → (H : is-common-divisor-ℕ a b d) → is-common-divisor-ℕ ( quotient-div-ℕ d a (pr1 H)) ( quotient-div-ℕ d b (pr2 H)) ( x) ↔ is-common-divisor-ℕ a b (x *ℕ d) pr1 (pr1 (simplify-is-common-divisor-quotient-div-ℕ nz H) K) = forward-implication (simplify-div-quotient-div-ℕ nz (pr1 H)) (pr1 K) pr2 (pr1 (simplify-is-common-divisor-quotient-div-ℕ nz H) K) = forward-implication (simplify-div-quotient-div-ℕ nz (pr2 H)) (pr2 K) pr1 (pr2 (simplify-is-common-divisor-quotient-div-ℕ nz H) K) = backward-implication (simplify-div-quotient-div-ℕ nz (pr1 H)) (pr1 K) pr2 (pr2 (simplify-is-common-divisor-quotient-div-ℕ nz H) K) = backward-implication (simplify-div-quotient-div-ℕ nz (pr2 H)) (pr2 K)
The greatest common divisor of a/d
and b/d
is gcd(a,b)/d
is-gcd-quotient-div-gcd-ℕ : {a b d : ℕ} → is-nonzero-ℕ d → (H : is-common-divisor-ℕ a b d) → is-gcd-ℕ ( quotient-div-ℕ d a (pr1 H)) ( quotient-div-ℕ d b (pr2 H)) ( quotient-div-ℕ d ( gcd-ℕ a b) ( div-gcd-is-common-divisor-ℕ a b d H)) is-gcd-quotient-div-gcd-ℕ {a} {b} {d} nz H x = logical-equivalence-reasoning is-common-divisor-ℕ ( quotient-div-ℕ d a (pr1 H)) ( quotient-div-ℕ d b (pr2 H)) ( x) ↔ is-common-divisor-ℕ a b (x *ℕ d) by simplify-is-common-divisor-quotient-div-ℕ nz H ↔ div-ℕ (x *ℕ d) (gcd-ℕ a b) by is-gcd-gcd-ℕ a b (x *ℕ d) ↔ div-ℕ x ( quotient-div-ℕ d ( gcd-ℕ a b) ( div-gcd-is-common-divisor-ℕ a b d H)) by inv-iff ( simplify-div-quotient-div-ℕ nz ( div-gcd-is-common-divisor-ℕ a b d H))