Vectors on rings
module linear-algebra.vectors-on-rings where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.identity-types open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.commutative-monoids open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups open import linear-algebra.constant-vectors open import linear-algebra.functoriality-vectors open import linear-algebra.vectors open import ring-theory.rings
Idea
Given a ring R
, the type vec n R
of R
-vectors is an R
-module.
Definitions
Listed vectors on rings
module _ {l : Level} (R : Ring l) where vec-Ring : ℕ → UU l vec-Ring = vec (type-Ring R) head-vec-Ring : {n : ℕ} → vec-Ring (succ-ℕ n) → type-Ring R head-vec-Ring v = head-vec v tail-vec-Ring : {n : ℕ} → vec-Ring (succ-ℕ n) → vec-Ring n tail-vec-Ring v = tail-vec v snoc-vec-Ring : {n : ℕ} → vec-Ring n → type-Ring R → vec-Ring (succ-ℕ n) snoc-vec-Ring v r = snoc-vec v r
Functional vectors on rings
module _ {l : Level} (R : Ring l) where functional-vec-Ring : ℕ → UU l functional-vec-Ring = functional-vec (type-Ring R) head-functional-vec-Ring : (n : ℕ) → functional-vec-Ring (succ-ℕ n) → type-Ring R head-functional-vec-Ring n v = head-functional-vec n v tail-functional-vec-Ring : (n : ℕ) → functional-vec-Ring (succ-ℕ n) → functional-vec-Ring n tail-functional-vec-Ring = tail-functional-vec cons-functional-vec-Ring : (n : ℕ) → type-Ring R → functional-vec-Ring n → functional-vec-Ring (succ-ℕ n) cons-functional-vec-Ring = cons-functional-vec snoc-functional-vec-Ring : (n : ℕ) → functional-vec-Ring n → type-Ring R → functional-vec-Ring (succ-ℕ n) snoc-functional-vec-Ring = snoc-functional-vec
Zero vector on a ring
The zero listed vector
module _ {l : Level} (R : Ring l) where zero-vec-Ring : {n : ℕ} → vec-Ring R n zero-vec-Ring = constant-vec (zero-Ring R)
The zero functional vector
module _ {l : Level} (R : Ring l) where zero-functional-vec-Ring : (n : ℕ) → functional-vec-Ring R n zero-functional-vec-Ring n i = zero-Ring R
Pointwise addition of vectors on a ring
Pointwise addition of listed vectors on a ring
module _ {l : Level} (R : Ring l) where add-vec-Ring : {n : ℕ} → vec-Ring R n → vec-Ring R n → vec-Ring R n add-vec-Ring = binary-map-vec (add-Ring R) associative-add-vec-Ring : {n : ℕ} (v1 v2 v3 : vec-Ring R n) → Id ( add-vec-Ring (add-vec-Ring v1 v2) v3) ( add-vec-Ring v1 (add-vec-Ring v2 v3)) associative-add-vec-Ring empty-vec empty-vec empty-vec = refl associative-add-vec-Ring (x ∷ v1) (y ∷ v2) (z ∷ v3) = ap-binary _∷_ ( associative-add-Ring R x y z) ( associative-add-vec-Ring v1 v2 v3) vec-Ring-Semigroup : ℕ → Semigroup l pr1 (vec-Ring-Semigroup n) = vec-Set (set-Ring R) n pr1 (pr2 (vec-Ring-Semigroup n)) = add-vec-Ring pr2 (pr2 (vec-Ring-Semigroup n)) = associative-add-vec-Ring left-unit-law-add-vec-Ring : {n : ℕ} (v : vec-Ring R n) → Id (add-vec-Ring (zero-vec-Ring R) v) v left-unit-law-add-vec-Ring empty-vec = refl left-unit-law-add-vec-Ring (x ∷ v) = ap-binary _∷_ ( left-unit-law-add-Ring R x) ( left-unit-law-add-vec-Ring v) right-unit-law-add-vec-Ring : {n : ℕ} (v : vec-Ring R n) → Id (add-vec-Ring v (zero-vec-Ring R)) v right-unit-law-add-vec-Ring empty-vec = refl right-unit-law-add-vec-Ring (x ∷ v) = ap-binary _∷_ ( right-unit-law-add-Ring R x) ( right-unit-law-add-vec-Ring v) vec-Ring-Monoid : ℕ → Monoid l pr1 (vec-Ring-Monoid n) = vec-Ring-Semigroup n pr1 (pr2 (vec-Ring-Monoid n)) = zero-vec-Ring R pr1 (pr2 (pr2 (vec-Ring-Monoid n))) = left-unit-law-add-vec-Ring pr2 (pr2 (pr2 (vec-Ring-Monoid n))) = right-unit-law-add-vec-Ring commutative-add-vec-Ring : {n : ℕ} (v w : vec-Ring R n) → Id (add-vec-Ring v w) (add-vec-Ring w v) commutative-add-vec-Ring empty-vec empty-vec = refl commutative-add-vec-Ring (x ∷ v) (y ∷ w) = ap-binary _∷_ ( commutative-add-Ring R x y) ( commutative-add-vec-Ring v w) vec-Ring-Commutative-Monoid : ℕ → Commutative-Monoid l pr1 (vec-Ring-Commutative-Monoid n) = vec-Ring-Monoid n pr2 (vec-Ring-Commutative-Monoid n) = commutative-add-vec-Ring
Pointwise addition of functional vectors on a ring
module _ {l : Level} (R : Ring l) where add-functional-vec-Ring : (n : ℕ) (v w : functional-vec-Ring R n) → functional-vec-Ring R n add-functional-vec-Ring n = binary-map-functional-vec n (add-Ring R) associative-add-functional-vec-Ring : (n : ℕ) (v1 v2 v3 : functional-vec-Ring R n) → ( add-functional-vec-Ring n (add-functional-vec-Ring n v1 v2) v3) = ( add-functional-vec-Ring n v1 (add-functional-vec-Ring n v2 v3)) associative-add-functional-vec-Ring n v1 v2 v3 = eq-htpy (λ i → associative-add-Ring R (v1 i) (v2 i) (v3 i)) functional-vec-Ring-Semigroup : ℕ → Semigroup l pr1 (functional-vec-Ring-Semigroup n) = functional-vec-Set (set-Ring R) n pr1 (pr2 (functional-vec-Ring-Semigroup n)) = add-functional-vec-Ring n pr2 (pr2 (functional-vec-Ring-Semigroup n)) = associative-add-functional-vec-Ring n left-unit-law-add-functional-vec-Ring : (n : ℕ) (v : functional-vec-Ring R n) → add-functional-vec-Ring n (zero-functional-vec-Ring R n) v = v left-unit-law-add-functional-vec-Ring n v = eq-htpy (λ i → left-unit-law-add-Ring R (v i)) right-unit-law-add-functional-vec-Ring : (n : ℕ) (v : functional-vec-Ring R n) → add-functional-vec-Ring n v (zero-functional-vec-Ring R n) = v right-unit-law-add-functional-vec-Ring n v = eq-htpy (λ i → right-unit-law-add-Ring R (v i)) functional-vec-Ring-Monoid : ℕ → Monoid l pr1 (functional-vec-Ring-Monoid n) = functional-vec-Ring-Semigroup n pr1 (pr2 (functional-vec-Ring-Monoid n)) = zero-functional-vec-Ring R n pr1 (pr2 (pr2 (functional-vec-Ring-Monoid n))) = left-unit-law-add-functional-vec-Ring n pr2 (pr2 (pr2 (functional-vec-Ring-Monoid n))) = right-unit-law-add-functional-vec-Ring n commutative-add-functional-vec-Ring : (n : ℕ) (v w : functional-vec-Ring R n) → add-functional-vec-Ring n v w = add-functional-vec-Ring n w v commutative-add-functional-vec-Ring n v w = eq-htpy (λ i → commutative-add-Ring R (v i) (w i)) functional-vec-Ring-Commutative-Monoid : ℕ → Commutative-Monoid l pr1 (functional-vec-Ring-Commutative-Monoid n) = functional-vec-Ring-Monoid n pr2 (functional-vec-Ring-Commutative-Monoid n) = commutative-add-functional-vec-Ring n
The negative of a vector on a ring
module _ {l : Level} (R : Ring l) where neg-vec-Ring : {n : ℕ} → vec-Ring R n → vec-Ring R n neg-vec-Ring = map-vec (neg-Ring R) left-inverse-law-add-vec-Ring : {n : ℕ} (v : vec-Ring R n) → Id (add-vec-Ring R (neg-vec-Ring v) v) (zero-vec-Ring R) left-inverse-law-add-vec-Ring empty-vec = refl left-inverse-law-add-vec-Ring (x ∷ v) = ap-binary _∷_ ( left-inverse-law-add-Ring R x) ( left-inverse-law-add-vec-Ring v) right-inverse-law-add-vec-Ring : {n : ℕ} (v : vec-Ring R n) → Id (add-vec-Ring R v (neg-vec-Ring v)) (zero-vec-Ring R) right-inverse-law-add-vec-Ring empty-vec = refl right-inverse-law-add-vec-Ring (x ∷ v) = ap-binary _∷_ ( right-inverse-law-add-Ring R x) ( right-inverse-law-add-vec-Ring v) is-unital-vec-Ring : (n : ℕ) → is-unital (add-vec-Ring R {n}) pr1 (is-unital-vec-Ring n) = zero-vec-Ring R pr1 (pr2 (is-unital-vec-Ring n)) = left-unit-law-add-vec-Ring R pr2 (pr2 (is-unital-vec-Ring n)) = right-unit-law-add-vec-Ring R is-group-vec-Ring : (n : ℕ) → is-group (vec-Ring-Semigroup R n) pr1 (is-group-vec-Ring n) = is-unital-vec-Ring n pr1 (pr2 (is-group-vec-Ring n)) = neg-vec-Ring pr1 (pr2 (pr2 (is-group-vec-Ring n))) = left-inverse-law-add-vec-Ring pr2 (pr2 (pr2 (is-group-vec-Ring n))) = right-inverse-law-add-vec-Ring vec-Ring-Group : ℕ → Group l pr1 (vec-Ring-Group n) = vec-Ring-Semigroup R n pr2 (vec-Ring-Group n) = is-group-vec-Ring n vec-Ring-Ab : ℕ → Ab l pr1 (vec-Ring-Ab n) = vec-Ring-Group n pr2 (vec-Ring-Ab n) = commutative-add-vec-Ring R