Decidable subposets
module order-theory.decidable-subposets where
Imports
open import foundation.decidable-subtypes open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import order-theory.posets open import order-theory.subposets
Idea
A decidable subposet of a poset P
is a decidable subtype of P
, equipped
with the restricted ordering of P
.
Definition
Decidable-Subposet : {l1 l2 : Level} (l3 : Level) → Poset l1 l2 → UU (l1 ⊔ lsuc l3) Decidable-Subposet l3 P = decidable-subtype l3 (type-Poset P) module _ {l1 l2 l3 : Level} (P : Poset l1 l2) (S : Decidable-Subposet l3 P) where type-Decidable-Subposet : UU (l1 ⊔ l3) type-Decidable-Subposet = type-Subposet P (subtype-decidable-subtype S) eq-type-Decidable-Subposet : (x y : type-Decidable-Subposet) → Id (pr1 x) (pr1 y) → Id x y eq-type-Decidable-Subposet = eq-type-Subposet P (subtype-decidable-subtype S) leq-Decidable-Subposet-Prop : (x y : type-Decidable-Subposet) → Prop l2 leq-Decidable-Subposet-Prop = leq-Subposet-Prop P (subtype-decidable-subtype S) leq-Decidable-Subposet : (x y : type-Decidable-Subposet) → UU l2 leq-Decidable-Subposet = leq-Subposet P (subtype-decidable-subtype S) is-prop-leq-Decidable-Subposet : (x y : type-Decidable-Subposet) → is-prop (leq-Decidable-Subposet x y) is-prop-leq-Decidable-Subposet = is-prop-leq-Subposet P (subtype-decidable-subtype S) refl-leq-Decidable-Subposet : (x : type-Decidable-Subposet) → leq-Decidable-Subposet x x refl-leq-Decidable-Subposet = refl-leq-Subposet P (subtype-decidable-subtype S) transitive-leq-Decidable-Subposet : (x y z : type-Decidable-Subposet) → leq-Decidable-Subposet y z → leq-Decidable-Subposet x y → leq-Decidable-Subposet x z transitive-leq-Decidable-Subposet = transitive-leq-Subposet P (subtype-decidable-subtype S) poset-Decidable-Subposet : Poset (l1 ⊔ l3) l2 poset-Decidable-Subposet = poset-Subposet P (subtype-decidable-subtype S)