Equivalences of higher groups

module higher-group-theory.equivalences-higher-groups where
Imports
open import foundation.0-connected-types
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.functions
open import foundation.fundamental-theorem-of-identity-types
open import foundation.identity-types
open import foundation.subtype-identity-principle
open import foundation.universe-levels

open import higher-group-theory.higher-groups
open import higher-group-theory.homomorphisms-higher-groups

open import structured-types.pointed-equivalences
open import structured-types.pointed-types

Definitions

Equivalences of higher groups

module _
  {l1 l2 : Level} (G : ∞-Group l1) (H : ∞-Group l2)
  where

  equiv-∞-Group : UU (l1  l2)
  equiv-∞-Group =
    classifying-pointed-type-∞-Group G ≃∗ classifying-pointed-type-∞-Group H

  hom-equiv-∞-Group : equiv-∞-Group  hom-∞-Group G H
  hom-equiv-∞-Group =
    pointed-map-pointed-equiv
      ( classifying-pointed-type-∞-Group G)
      ( classifying-pointed-type-∞-Group H)

  map-equiv-∞-Group : equiv-∞-Group  type-∞-Group G  type-∞-Group H
  map-equiv-∞-Group = map-hom-∞-Group G H  hom-equiv-∞-Group

The identity equivalence of higher groups

id-equiv-∞-Group :
  {l1 : Level} (G : ∞-Group l1)  equiv-∞-Group G G
id-equiv-∞-Group G = id-pointed-equiv (classifying-pointed-type-∞-Group G)

Isomorphisms of ∞-groups

module _
  {l1 l2 : Level} (G : ∞-Group l1) (H : ∞-Group l2)
  where

  is-iso-hom-∞-Group : hom-∞-Group G H  UU (l1  l2)
  is-iso-hom-∞-Group =
    is-iso-pointed-map
      ( classifying-pointed-type-∞-Group G)
      ( classifying-pointed-type-∞-Group H)

Properties

The total space of equivalences of higher groups is contractible

is-contr-total-equiv-∞-Group :
  {l1 : Level} (G : ∞-Group l1)  is-contr (Σ (∞-Group l1) (equiv-∞-Group G))
is-contr-total-equiv-∞-Group G =
  is-contr-total-Eq-subtype
    ( is-contr-total-equiv-Pointed-Type (classifying-pointed-type-∞-Group G))
    ( λ X  is-prop-is-0-connected (type-Pointed-Type X))
    ( classifying-pointed-type-∞-Group G)
    ( id-pointed-equiv (classifying-pointed-type-∞-Group G))
    ( is-0-connected-classifying-type-∞-Group G)

equiv-eq-∞-Group :
  {l1 : Level} (G H : ∞-Group l1)  (G  H)  equiv-∞-Group G H
equiv-eq-∞-Group G .G refl = id-equiv-∞-Group G

is-equiv-equiv-eq-∞-Group :
  {l1 : Level} (G H : ∞-Group l1)  is-equiv (equiv-eq-∞-Group G H)
is-equiv-equiv-eq-∞-Group G =
  fundamental-theorem-id
    ( is-contr-total-equiv-∞-Group G)
    ( equiv-eq-∞-Group G)

extensionality-∞-Group :
  {l1 : Level} (G H : ∞-Group l1)  (G  H)  equiv-∞-Group G H
pr1 (extensionality-∞-Group G H) = equiv-eq-∞-Group G H
pr2 (extensionality-∞-Group G H) = is-equiv-equiv-eq-∞-Group G H

eq-equiv-∞-Group :
  {l1 : Level} (G H : ∞-Group l1)  equiv-∞-Group G H  G  H
eq-equiv-∞-Group G H = map-inv-equiv (extensionality-∞-Group G H)