Equivalences of higher groups
module higher-group-theory.equivalences-higher-groups where
Imports
open import foundation.0-connected-types open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functions open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.subtype-identity-principle open import foundation.universe-levels open import higher-group-theory.higher-groups open import higher-group-theory.homomorphisms-higher-groups open import structured-types.pointed-equivalences open import structured-types.pointed-types
Definitions
Equivalences of higher groups
module _ {l1 l2 : Level} (G : ∞-Group l1) (H : ∞-Group l2) where equiv-∞-Group : UU (l1 ⊔ l2) equiv-∞-Group = classifying-pointed-type-∞-Group G ≃∗ classifying-pointed-type-∞-Group H hom-equiv-∞-Group : equiv-∞-Group → hom-∞-Group G H hom-equiv-∞-Group = pointed-map-pointed-equiv ( classifying-pointed-type-∞-Group G) ( classifying-pointed-type-∞-Group H) map-equiv-∞-Group : equiv-∞-Group → type-∞-Group G → type-∞-Group H map-equiv-∞-Group = map-hom-∞-Group G H ∘ hom-equiv-∞-Group
The identity equivalence of higher groups
id-equiv-∞-Group : {l1 : Level} (G : ∞-Group l1) → equiv-∞-Group G G id-equiv-∞-Group G = id-pointed-equiv (classifying-pointed-type-∞-Group G)
Isomorphisms of ∞-groups
module _ {l1 l2 : Level} (G : ∞-Group l1) (H : ∞-Group l2) where is-iso-hom-∞-Group : hom-∞-Group G H → UU (l1 ⊔ l2) is-iso-hom-∞-Group = is-iso-pointed-map ( classifying-pointed-type-∞-Group G) ( classifying-pointed-type-∞-Group H)
Properties
The total space of equivalences of higher groups is contractible
is-contr-total-equiv-∞-Group : {l1 : Level} (G : ∞-Group l1) → is-contr (Σ (∞-Group l1) (equiv-∞-Group G)) is-contr-total-equiv-∞-Group G = is-contr-total-Eq-subtype ( is-contr-total-equiv-Pointed-Type (classifying-pointed-type-∞-Group G)) ( λ X → is-prop-is-0-connected (type-Pointed-Type X)) ( classifying-pointed-type-∞-Group G) ( id-pointed-equiv (classifying-pointed-type-∞-Group G)) ( is-0-connected-classifying-type-∞-Group G) equiv-eq-∞-Group : {l1 : Level} (G H : ∞-Group l1) → (G = H) → equiv-∞-Group G H equiv-eq-∞-Group G .G refl = id-equiv-∞-Group G is-equiv-equiv-eq-∞-Group : {l1 : Level} (G H : ∞-Group l1) → is-equiv (equiv-eq-∞-Group G H) is-equiv-equiv-eq-∞-Group G = fundamental-theorem-id ( is-contr-total-equiv-∞-Group G) ( equiv-eq-∞-Group G) extensionality-∞-Group : {l1 : Level} (G H : ∞-Group l1) → (G = H) ≃ equiv-∞-Group G H pr1 (extensionality-∞-Group G H) = equiv-eq-∞-Group G H pr2 (extensionality-∞-Group G H) = is-equiv-equiv-eq-∞-Group G H eq-equiv-∞-Group : {l1 : Level} (G H : ∞-Group l1) → equiv-∞-Group G H → G = H eq-equiv-∞-Group G H = map-inv-equiv (extensionality-∞-Group G H)