Commutators of elements in groups
module group-theory.commutators-groups where
Imports
open import foundation.identity-types open import foundation.universe-levels open import group-theory.groups
Idea
A commutator gives an indication of the extent to which a group multiplication fails to be commutative.
The commutator of two elements, g and h, of a group G, is the element
[g, h] = (gh)(hg)⁻¹
.
https://en.wikipedia.org/wiki/Commutator#Group_theory
Definition
module _ {l : Level} (G : Group l) where commutator-Group : type-Group G → type-Group G → type-Group G commutator-Group x y = right-div-Group G (mul-Group G x y) (mul-Group G y x)
Properties
The commutator of x
and y
is unit if and only x
and y
commutes
module _ {l : Level} (G : Group l) where is-unit-commutator-commute-Group : (x y : type-Group G) → commute-Group G x y → is-unit-Group G (commutator-Group G x y) is-unit-commutator-commute-Group x y H = is-unit-right-div-eq-Group G H commute-is-unit-commutator-Group : (x y : type-Group G) → is-unit-Group G (commutator-Group G x y) → commute-Group G x y commute-is-unit-commutator-Group x y H = eq-is-unit-right-div-Group G H
The inverse of the commutator [x,y]
is [y,x]
inv-commutator-Group : (x y : type-Group G) → inv-Group G (commutator-Group G x y) = commutator-Group G y x inv-commutator-Group x y = inv-right-div-Group G (mul-Group G x y) (mul-Group G y x)