Natural isomorphisms between functors between precategories
module category-theory.natural-isomorphisms-precategories where
Imports
open import category-theory.functors-precategories open import category-theory.isomorphisms-precategories open import category-theory.natural-transformations-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.functions open import foundation.propositions open import foundation.universe-levels
Idea
A natural isomorphism γ
from functor F : C → D
to G : C → D
is a natural
transformation from F
to G
such that the morphism γ x : hom (F x) (G x)
is
an isomorphism, for every object x
in C
.
Definition
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F G : functor-Precategory C D) where is-natural-isomorphism-Precategory : natural-transformation-Precategory C D F G → UU (l1 ⊔ l4) is-natural-isomorphism-Precategory γ = (x : obj-Precategory C) → is-iso-Precategory D ( components-natural-transformation-Precategory C D F G γ x) natural-isomorphism-Precategory : UU (l1 ⊔ l2 ⊔ l4) natural-isomorphism-Precategory = Σ ( natural-transformation-Precategory C D F G) ( is-natural-isomorphism-Precategory)
Propositions
Being a natural isomorphism is a proposition
That a natural transformation is a natural isomorphism is a proposition. This follows from the fact that being an isomorphism is a proposition.
is-prop-is-natural-isomorphism-Precategory : {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F G : functor-Precategory C D) (γ : natural-transformation-Precategory C D F G) → is-prop (is-natural-isomorphism-Precategory C D F G γ) is-prop-is-natural-isomorphism-Precategory C D F G γ = is-prop-Π (is-prop-is-iso-Precategory D ∘ components-natural-transformation-Precategory C D F G γ)