Decidable dependent function types
module univalent-combinatorics.decidable-dependent-function-types where
Imports
open import elementary-number-theory.decidable-dependent-function-types public open import elementary-number-theory.natural-numbers open import foundation.coproduct-types open import foundation.decidable-propositions open import foundation.decidable-types open import foundation.empty-types open import foundation.equivalences open import foundation.functions open import foundation.propositional-truncations open import foundation.propositions open import foundation.unit-type open import foundation.universe-levels open import univalent-combinatorics.counting open import univalent-combinatorics.finite-choice open import univalent-combinatorics.finite-types open import univalent-combinatorics.standard-finite-types
Idea
We describe conditions under which dependent products are decidable.
is-decidable-Π-Fin : {l1 : Level} (k : ℕ) {B : Fin k → UU l1} → ((x : Fin k) → is-decidable (B x)) → is-decidable ((x : Fin k) → B x) is-decidable-Π-Fin zero-ℕ {B} d = inl ind-empty is-decidable-Π-Fin (succ-ℕ k) {B} d = is-decidable-Π-Maybe ( is-decidable-Π-Fin k (λ x → d (inl x))) ( d (inr star))
is-decidable-Π-count : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → count A → ((x : A) → is-decidable (B x)) → is-decidable ((x : A) → B x) is-decidable-Π-count e d = is-decidable-Π-equiv ( equiv-count e) ( λ x → id-equiv) ( is-decidable-Π-Fin ( number-of-elements-count e) ( λ x → d (map-equiv-count e x))) is-decidable-Π-is-finite : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-finite A → ((x : A) → is-decidable (B x)) → is-decidable ((x : A) → B x) is-decidable-Π-is-finite {l1} {l2} {A} {B} H d = is-decidable-iff ( map-Π (λ x → elim-trunc-Prop-is-decidable (d x))) ( map-Π (λ x → unit-trunc-Prop)) ( is-decidable-iff ( α) ( finite-choice H) ( apply-universal-property-trunc-Prop H ( is-decidable-Prop (trunc-Prop ((x : A) → B x))) ( λ e → is-decidable-iff ( finite-choice H) ( α) ( is-decidable-Π-count e ( λ x → is-decidable-iff ( unit-trunc-Prop) ( elim-trunc-Prop-is-decidable (d x)) ( d x)))))) where α : type-trunc-Prop ((x : A) → B x) → (x : A) → type-trunc-Prop (B x) α = map-universal-property-trunc-Prop ( Π-Prop A (λ x → trunc-Prop (B x))) ( λ (f : (x : A) → B x) (x : A) → unit-trunc-Prop (f x))