Saturated congruence relations on commutative monoids

module group-theory.saturated-congruence-relations-commutative-monoids where
Imports
open import foundation.binary-relations
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.equivalence-relations
open import foundation.equivalences
open import foundation.fundamental-theorem-of-identity-types
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.propositions
open import foundation.subtype-identity-principle
open import foundation.universe-levels

open import group-theory.commutative-monoids
open import group-theory.congruence-relations-commutative-monoids

Idea

For any commutative monoid M, the type of normal submonoids is a retract of the type of congruence relations on M. A congruence relation on M is said to be saturated if it is in the image of the inclusion of the normal submonoids of M into the congruence relations on M.

Definition

module _
  {l1 l2 : Level} (M : Commutative-Monoid l1)
  (R : congruence-Commutative-Monoid l2 M)
  where

  is-saturated-congruence-commutative-monoid-Prop : Prop (l1  l2)
  is-saturated-congruence-commutative-monoid-Prop =
    Π-Prop
      ( type-Commutative-Monoid M)
      ( λ x 
        Π-Prop
          ( type-Commutative-Monoid M)
          ( λ y 
            function-Prop
              ( (u : type-Commutative-Monoid M) 
                ( sim-congruence-Commutative-Monoid M R
                  ( mul-Commutative-Monoid M u x)
                  ( unit-Commutative-Monoid M)) 
                ( sim-congruence-Commutative-Monoid M R
                  ( mul-Commutative-Monoid M u y)
                  ( unit-Commutative-Monoid M)))
              ( prop-congruence-Commutative-Monoid M R x y)))

  is-saturated-congruence-Commutative-Monoid : UU (l1  l2)
  is-saturated-congruence-Commutative-Monoid =
    type-Prop is-saturated-congruence-commutative-monoid-Prop

  is-prop-is-saturated-congruence-Commutative-Monoid :
    is-prop is-saturated-congruence-Commutative-Monoid
  is-prop-is-saturated-congruence-Commutative-Monoid =
    is-prop-type-Prop is-saturated-congruence-commutative-monoid-Prop

saturated-congruence-Commutative-Monoid :
  {l1 : Level} (l2 : Level) (M : Commutative-Monoid l1)  UU (l1  lsuc l2)
saturated-congruence-Commutative-Monoid l2 M =
  Σ ( congruence-Commutative-Monoid l2 M)
    ( is-saturated-congruence-Commutative-Monoid M)

module _
  {l1 l2 : Level} (M : Commutative-Monoid l1)
  (R : saturated-congruence-Commutative-Monoid l2 M)
  where

  congruence-saturated-congruence-Commutative-Monoid :
    congruence-Commutative-Monoid l2 M
  congruence-saturated-congruence-Commutative-Monoid = pr1 R

  is-saturated-saturated-congruence-Commutative-Monoid :
    is-saturated-congruence-Commutative-Monoid M
      congruence-saturated-congruence-Commutative-Monoid
  is-saturated-saturated-congruence-Commutative-Monoid = pr2 R

  eq-rel-saturated-congruence-Commutative-Monoid :
    Eq-Rel l2 (type-Commutative-Monoid M)
  eq-rel-saturated-congruence-Commutative-Monoid =
    eq-rel-congruence-Commutative-Monoid M
      congruence-saturated-congruence-Commutative-Monoid

  prop-saturated-congruence-Commutative-Monoid :
    Rel-Prop l2 (type-Commutative-Monoid M)
  prop-saturated-congruence-Commutative-Monoid =
    prop-congruence-Commutative-Monoid M
      congruence-saturated-congruence-Commutative-Monoid

  sim-saturated-congruence-Commutative-Monoid :
    (x y : type-Commutative-Monoid M)  UU l2
  sim-saturated-congruence-Commutative-Monoid =
    sim-congruence-Commutative-Monoid M
      congruence-saturated-congruence-Commutative-Monoid

  is-prop-sim-saturated-congruence-Commutative-Monoid :
    (x y : type-Commutative-Monoid M) 
      is-prop (sim-saturated-congruence-Commutative-Monoid x y)
  is-prop-sim-saturated-congruence-Commutative-Monoid =
    is-prop-sim-congruence-Commutative-Monoid M
      congruence-saturated-congruence-Commutative-Monoid

  concatenate-sim-eq-saturated-congruence-Commutative-Monoid :
    {x y z : type-Commutative-Monoid M} 
    sim-saturated-congruence-Commutative-Monoid x y  y  z 
    sim-saturated-congruence-Commutative-Monoid x z
  concatenate-sim-eq-saturated-congruence-Commutative-Monoid =
    concatenate-sim-eq-congruence-Commutative-Monoid M
      congruence-saturated-congruence-Commutative-Monoid

  concatenate-eq-sim-saturated-congruence-Commutative-Monoid :
    {x y z : type-Commutative-Monoid M}  x  y 
    sim-saturated-congruence-Commutative-Monoid y z 
    sim-saturated-congruence-Commutative-Monoid x z
  concatenate-eq-sim-saturated-congruence-Commutative-Monoid =
    concatenate-eq-sim-congruence-Commutative-Monoid M
      congruence-saturated-congruence-Commutative-Monoid

  concatenate-eq-sim-eq-saturated-congruence-Commutative-Monoid :
    {x y z w : type-Commutative-Monoid M}  x  y 
    sim-saturated-congruence-Commutative-Monoid y z 
    z  w  sim-saturated-congruence-Commutative-Monoid x w
  concatenate-eq-sim-eq-saturated-congruence-Commutative-Monoid =
    concatenate-eq-sim-eq-congruence-Commutative-Monoid M
      congruence-saturated-congruence-Commutative-Monoid

  refl-saturated-congruence-Commutative-Monoid :
    is-reflexive-Rel-Prop prop-saturated-congruence-Commutative-Monoid
  refl-saturated-congruence-Commutative-Monoid =
    refl-congruence-Commutative-Monoid M
    congruence-saturated-congruence-Commutative-Monoid

  symm-saturated-congruence-Commutative-Monoid :
    is-symmetric-Rel-Prop prop-saturated-congruence-Commutative-Monoid
  symm-saturated-congruence-Commutative-Monoid =
    symm-congruence-Commutative-Monoid M
    congruence-saturated-congruence-Commutative-Monoid

  equiv-symm-saturated-congruence-Commutative-Monoid :
    (x y : type-Commutative-Monoid M) 
    sim-saturated-congruence-Commutative-Monoid x y 
    sim-saturated-congruence-Commutative-Monoid y x
  equiv-symm-saturated-congruence-Commutative-Monoid =
    equiv-symm-congruence-Commutative-Monoid M
    congruence-saturated-congruence-Commutative-Monoid

  trans-saturated-congruence-Commutative-Monoid :
    is-transitive-Rel-Prop prop-saturated-congruence-Commutative-Monoid
  trans-saturated-congruence-Commutative-Monoid =
    trans-congruence-Commutative-Monoid M
      congruence-saturated-congruence-Commutative-Monoid

  mul-saturated-congruence-Commutative-Monoid :
    is-congruence-Commutative-Monoid M
      eq-rel-saturated-congruence-Commutative-Monoid
  mul-saturated-congruence-Commutative-Monoid =
    mul-congruence-Commutative-Monoid M
      congruence-saturated-congruence-Commutative-Monoid

Properties

Extensionality of the type of saturated congruence relations on a commutative monoid

relate-same-elements-saturated-congruence-Commutative-Monoid :
  {l1 l2 l3 : Level} (M : Commutative-Monoid l1)
  (R : saturated-congruence-Commutative-Monoid l2 M)
  (S : saturated-congruence-Commutative-Monoid l3 M)  UU (l1  l2  l3)
relate-same-elements-saturated-congruence-Commutative-Monoid M R S =
  relate-same-elements-congruence-Commutative-Monoid M
    ( congruence-saturated-congruence-Commutative-Monoid M R)
    ( congruence-saturated-congruence-Commutative-Monoid M S)

refl-relate-same-elements-saturated-congruence-Commutative-Monoid :
  {l1 l2 : Level} (M : Commutative-Monoid l1)
  (R : saturated-congruence-Commutative-Monoid l2 M) 
  relate-same-elements-saturated-congruence-Commutative-Monoid M R R
refl-relate-same-elements-saturated-congruence-Commutative-Monoid M R =
  refl-relate-same-elements-congruence-Commutative-Monoid M
    ( congruence-saturated-congruence-Commutative-Monoid M R)

is-contr-total-relate-same-elements-saturated-congruence-Commutative-Monoid :
  {l1 l2 : Level} (M : Commutative-Monoid l1)
  (R : saturated-congruence-Commutative-Monoid l2 M) 
  is-contr
    ( Σ ( saturated-congruence-Commutative-Monoid l2 M)
        ( relate-same-elements-saturated-congruence-Commutative-Monoid M R))
is-contr-total-relate-same-elements-saturated-congruence-Commutative-Monoid
  M R =
  is-contr-total-Eq-subtype
    ( is-contr-total-relate-same-elements-congruence-Commutative-Monoid M
      ( congruence-saturated-congruence-Commutative-Monoid M R))
    ( is-prop-is-saturated-congruence-Commutative-Monoid M)
    ( congruence-saturated-congruence-Commutative-Monoid M R)
    ( refl-relate-same-elements-congruence-Commutative-Monoid M
      ( congruence-saturated-congruence-Commutative-Monoid M R))
    ( is-saturated-saturated-congruence-Commutative-Monoid M R)

relate-same-elements-eq-saturated-congruence-Commutative-Monoid :
  {l1 l2 : Level} (M : Commutative-Monoid l1)
  (R S : saturated-congruence-Commutative-Monoid l2 M) 
  R  S  relate-same-elements-saturated-congruence-Commutative-Monoid M R S
relate-same-elements-eq-saturated-congruence-Commutative-Monoid M R .R refl =
  refl-relate-same-elements-saturated-congruence-Commutative-Monoid M R

is-equiv-relate-same-elements-eq-saturated-congruence-Commutative-Monoid :
  {l1 l2 : Level} (M : Commutative-Monoid l1)
  (R S : saturated-congruence-Commutative-Monoid l2 M) 
  is-equiv
    ( relate-same-elements-eq-saturated-congruence-Commutative-Monoid M R S)
is-equiv-relate-same-elements-eq-saturated-congruence-Commutative-Monoid M R =
  fundamental-theorem-id
    ( is-contr-total-relate-same-elements-saturated-congruence-Commutative-Monoid
      ( M)
      ( R))
    ( relate-same-elements-eq-saturated-congruence-Commutative-Monoid M R)

extensionality-saturated-congruence-Commutative-Monoid :
  {l1 l2 : Level} (M : Commutative-Monoid l1)
  (R S : saturated-congruence-Commutative-Monoid l2 M) 
  (R  S)  relate-same-elements-saturated-congruence-Commutative-Monoid M R S
pr1 (extensionality-saturated-congruence-Commutative-Monoid M R S) =
  relate-same-elements-eq-saturated-congruence-Commutative-Monoid M R S
pr2 (extensionality-saturated-congruence-Commutative-Monoid M R S) =
  is-equiv-relate-same-elements-eq-saturated-congruence-Commutative-Monoid M R S

eq-relate-same-elements-saturated-congruence-Commutative-Monoid :
  {l1 l2 : Level} (M : Commutative-Monoid l1)
  (R S : saturated-congruence-Commutative-Monoid l2 M) 
  relate-same-elements-saturated-congruence-Commutative-Monoid M R S  R  S
eq-relate-same-elements-saturated-congruence-Commutative-Monoid M R S =
  map-inv-equiv (extensionality-saturated-congruence-Commutative-Monoid M R S)

See also

  • Not every congruence relation on a commutative monoid is saturated. For an example, see the commutative monoid ℕ-Max.