The monoid of the natural numbers with maximum
module elementary-number-theory.monoid-of-natural-numbers-with-maximum where
Imports
open import elementary-number-theory.initial-segments-natural-numbers open import elementary-number-theory.maximum-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.monoids open import group-theory.normal-submonoids-commutative-monoids open import group-theory.semigroups open import group-theory.submonoids-commutative-monoids
Idea
The type ℕ
of natural numbers equipped with 0
and max-ℕ
forms a monoid.
Normal submonoids of this monoid are initial segments of the natural numbers.
Furthermore, the identity relation is a nonsaturated congruence relation on
ℕ-Max
.
Definition
semigroup-ℕ-Max : Semigroup lzero pr1 semigroup-ℕ-Max = ℕ-Set pr1 (pr2 semigroup-ℕ-Max) = max-ℕ pr2 (pr2 semigroup-ℕ-Max) = associative-max-ℕ monoid-ℕ-Max : Monoid lzero pr1 monoid-ℕ-Max = semigroup-ℕ-Max pr1 (pr2 monoid-ℕ-Max) = 0 pr1 (pr2 (pr2 monoid-ℕ-Max)) = left-unit-law-max-ℕ pr2 (pr2 (pr2 monoid-ℕ-Max)) = right-unit-law-max-ℕ ℕ-Max : Commutative-Monoid lzero pr1 ℕ-Max = monoid-ℕ-Max pr2 ℕ-Max = commutative-max-ℕ
Properties
Normal Submonoids of ℕ-Max
are initial segments of the natural numbers
module _ {l : Level} (N : Normal-Commutative-Submonoid l ℕ-Max) where is-initial-segment-Normal-Commutative-Submonoid-ℕ-Max : is-initial-segment-subset-ℕ ( subset-Normal-Commutative-Submonoid ℕ-Max N) is-initial-segment-Normal-Commutative-Submonoid-ℕ-Max x H = ( is-normal-Normal-Commutative-Submonoid ℕ-Max N x ( succ-ℕ x) ( H)) ( is-closed-under-eq-Normal-Commutative-Submonoid' ( ℕ-Max) ( N) ( H) ( right-successor-diagonal-law-max-ℕ x)) initial-segment-Normal-Submonoid-ℕ-Max : initial-segment-ℕ l pr1 initial-segment-Normal-Submonoid-ℕ-Max = subset-Normal-Commutative-Submonoid ℕ-Max N pr2 initial-segment-Normal-Submonoid-ℕ-Max = is-initial-segment-Normal-Commutative-Submonoid-ℕ-Max
Initial segments of the natural numbers are normal submonoids of ℕ-Max
submonoid-initial-segment-ℕ-Max : {l : Level} (I : initial-segment-ℕ l) (i0 : is-in-initial-segment-ℕ I 0) → Commutative-Submonoid l ℕ-Max pr1 (submonoid-initial-segment-ℕ-Max I i0) = subset-initial-segment-ℕ I pr1 (pr2 (submonoid-initial-segment-ℕ-Max I i0)) = i0 pr2 (pr2 (submonoid-initial-segment-ℕ-Max I i0)) = max-initial-segment-ℕ I is-normal-submonoid-initial-segment-ℕ-Max : {l : Level} (I : initial-segment-ℕ l) (i0 : is-in-initial-segment-ℕ I 0) → is-normal-Commutative-Submonoid ℕ-Max (submonoid-initial-segment-ℕ-Max I i0) is-normal-submonoid-initial-segment-ℕ-Max I i0 u zero-ℕ H K = is-closed-under-eq-Commutative-Submonoid ( ℕ-Max) ( submonoid-initial-segment-ℕ-Max I i0) ( K) ( right-unit-law-max-ℕ u) is-normal-submonoid-initial-segment-ℕ-Max I i0 zero-ℕ (succ-ℕ x) H K = i0 is-normal-submonoid-initial-segment-ℕ-Max I i0 (succ-ℕ u) (succ-ℕ x) H K = is-normal-submonoid-initial-segment-ℕ-Max ( shift-initial-segment-ℕ I) ( contains-one-initial-segment-ℕ I (max-ℕ u x) K) ( u) ( x) ( H) ( K)