Products of tuples of types
module foundation.products-of-tuples-of-types where
Imports
open import elementary-number-theory.natural-numbers open import foundation.tuples-of-types open import foundation-core.universe-levels open import univalent-combinatorics.standard-finite-types
Idea
The product of an n
-tuple of types is just the dependent product.
Definition
Products of n
-tuples of types
product-tuple-types : {l : Level} (n : ℕ) → tuple-types l n → UU l product-tuple-types n A = (i : Fin n) → A i
The projection maps
pr-product-tuple-types : {l : Level} {n : ℕ} (A : tuple-types l n) (i : Fin n) → product-tuple-types n A → A i pr-product-tuple-types A i f = f i {- equiv-universal-property-product-tuple-types : {l : Level} {n : ℕ} (A : tuple-types l (succ-ℕ n)) (i : Fin (succ-ℕ n)) → ( product-tuple-types (succ-ℕ n) A) ≃ ( ( product-tuple-types n {!!}) × A i) equiv-universal-property-product-tuple-types A i = {!!} -}