Products of rings
module ring-theory.products-rings where
Imports
open import foundation.dependent-pair-types open import foundation.equality-cartesian-product-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.groups open import group-theory.semigroups open import ring-theory.rings
Idea
Given two ringrs R1 and R2, we define a ring structure on the product of R1 and R2.
Definition
module _ {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) where set-prod-Ring : Set (l1 ⊔ l2) set-prod-Ring = prod-Set (set-Ring R1) (set-Ring R2) type-prod-Ring : UU (l1 ⊔ l2) type-prod-Ring = type-Set set-prod-Ring is-set-type-prod-Ring : is-set type-prod-Ring is-set-type-prod-Ring = is-set-type-Set set-prod-Ring add-prod-Ring : type-prod-Ring → type-prod-Ring → type-prod-Ring pr1 (add-prod-Ring (pair x1 y1) (pair x2 y2)) = add-Ring R1 x1 x2 pr2 (add-prod-Ring (pair x1 y1) (pair x2 y2)) = add-Ring R2 y1 y2 zero-prod-Ring : type-prod-Ring pr1 zero-prod-Ring = zero-Ring R1 pr2 zero-prod-Ring = zero-Ring R2 neg-prod-Ring : type-prod-Ring → type-prod-Ring pr1 (neg-prod-Ring (pair x y)) = neg-Ring R1 x pr2 (neg-prod-Ring (pair x y)) = neg-Ring R2 y left-unit-law-add-prod-Ring : (x : type-prod-Ring) → Id (add-prod-Ring zero-prod-Ring x) x left-unit-law-add-prod-Ring (pair x y) = eq-pair (left-unit-law-add-Ring R1 x) (left-unit-law-add-Ring R2 y) right-unit-law-add-prod-Ring : (x : type-prod-Ring) → Id (add-prod-Ring x zero-prod-Ring) x right-unit-law-add-prod-Ring (pair x y) = eq-pair (right-unit-law-add-Ring R1 x) (right-unit-law-add-Ring R2 y) left-inverse-law-add-prod-Ring : (x : type-prod-Ring) → Id (add-prod-Ring (neg-prod-Ring x) x) zero-prod-Ring left-inverse-law-add-prod-Ring (pair x y) = eq-pair (left-inverse-law-add-Ring R1 x) (left-inverse-law-add-Ring R2 y) right-inverse-law-add-prod-Ring : (x : type-prod-Ring) → Id (add-prod-Ring x (neg-prod-Ring x)) zero-prod-Ring right-inverse-law-add-prod-Ring (pair x y) = eq-pair (right-inverse-law-add-Ring R1 x) (right-inverse-law-add-Ring R2 y) associative-add-prod-Ring : (x y z : type-prod-Ring) → Id ( add-prod-Ring (add-prod-Ring x y) z) ( add-prod-Ring x (add-prod-Ring y z)) associative-add-prod-Ring (pair x1 y1) (pair x2 y2) (pair x3 y3) = eq-pair ( associative-add-Ring R1 x1 x2 x3) ( associative-add-Ring R2 y1 y2 y3) commutative-add-prod-Ring : (x y : type-prod-Ring) → Id (add-prod-Ring x y) (add-prod-Ring y x) commutative-add-prod-Ring (pair x1 y1) (pair x2 y2) = eq-pair ( commutative-add-Ring R1 x1 x2) ( commutative-add-Ring R2 y1 y2) mul-prod-Ring : type-prod-Ring → type-prod-Ring → type-prod-Ring pr1 (mul-prod-Ring (pair x1 y1) (pair x2 y2)) = mul-Ring R1 x1 x2 pr2 (mul-prod-Ring (pair x1 y1) (pair x2 y2)) = mul-Ring R2 y1 y2 one-prod-Ring : type-prod-Ring pr1 one-prod-Ring = one-Ring R1 pr2 one-prod-Ring = one-Ring R2 associative-mul-prod-Ring : (x y z : type-prod-Ring) → Id ( mul-prod-Ring (mul-prod-Ring x y) z) ( mul-prod-Ring x (mul-prod-Ring y z)) associative-mul-prod-Ring (pair x1 y1) (pair x2 y2) (pair x3 y3) = eq-pair ( associative-mul-Ring R1 x1 x2 x3) ( associative-mul-Ring R2 y1 y2 y3) left-unit-law-mul-prod-Ring : (x : type-prod-Ring) → Id (mul-prod-Ring one-prod-Ring x) x left-unit-law-mul-prod-Ring (pair x y) = eq-pair (left-unit-law-mul-Ring R1 x) (left-unit-law-mul-Ring R2 y) right-unit-law-mul-prod-Ring : (x : type-prod-Ring) → Id (mul-prod-Ring x one-prod-Ring) x right-unit-law-mul-prod-Ring (pair x y) = eq-pair (right-unit-law-mul-Ring R1 x) (right-unit-law-mul-Ring R2 y) left-distributive-mul-add-prod-Ring : (x y z : type-prod-Ring) → Id ( mul-prod-Ring x (add-prod-Ring y z)) ( add-prod-Ring (mul-prod-Ring x y) (mul-prod-Ring x z)) left-distributive-mul-add-prod-Ring (pair x1 y1) (pair x2 y2) (pair x3 y3) = eq-pair ( left-distributive-mul-add-Ring R1 x1 x2 x3) ( left-distributive-mul-add-Ring R2 y1 y2 y3) right-distributive-mul-add-prod-Ring : (x y z : type-prod-Ring) → Id ( mul-prod-Ring (add-prod-Ring x y) z) ( add-prod-Ring (mul-prod-Ring x z) (mul-prod-Ring y z)) right-distributive-mul-add-prod-Ring (pair x1 y1) (pair x2 y2) (pair x3 y3) = eq-pair ( right-distributive-mul-add-Ring R1 x1 x2 x3) ( right-distributive-mul-add-Ring R2 y1 y2 y3) semigroup-prod-Ring : Semigroup (l1 ⊔ l2) pr1 semigroup-prod-Ring = set-prod-Ring pr1 (pr2 semigroup-prod-Ring) = add-prod-Ring pr2 (pr2 semigroup-prod-Ring) = associative-add-prod-Ring group-prod-Ring : Group (l1 ⊔ l2) pr1 group-prod-Ring = semigroup-prod-Ring pr1 (pr1 (pr2 group-prod-Ring)) = zero-prod-Ring pr1 (pr2 (pr1 (pr2 group-prod-Ring))) = left-unit-law-add-prod-Ring pr2 (pr2 (pr1 (pr2 group-prod-Ring))) = right-unit-law-add-prod-Ring pr1 (pr2 (pr2 group-prod-Ring)) = neg-prod-Ring pr1 (pr2 (pr2 (pr2 group-prod-Ring))) = left-inverse-law-add-prod-Ring pr2 (pr2 (pr2 (pr2 group-prod-Ring))) = right-inverse-law-add-prod-Ring ab-prod-Ring : Ab (l1 ⊔ l2) pr1 ab-prod-Ring = group-prod-Ring pr2 ab-prod-Ring = commutative-add-prod-Ring prod-Ring : Ring (l1 ⊔ l2) pr1 prod-Ring = ab-prod-Ring pr1 (pr1 (pr2 prod-Ring)) = mul-prod-Ring pr2 (pr1 (pr2 prod-Ring)) = associative-mul-prod-Ring pr1 (pr1 (pr2 (pr2 prod-Ring))) = one-prod-Ring pr1 (pr2 (pr1 (pr2 (pr2 prod-Ring)))) = left-unit-law-mul-prod-Ring pr2 (pr2 (pr1 (pr2 (pr2 prod-Ring)))) = right-unit-law-mul-prod-Ring pr1 (pr2 (pr2 (pr2 prod-Ring))) = left-distributive-mul-add-prod-Ring pr2 (pr2 (pr2 (pr2 prod-Ring))) = right-distributive-mul-add-prod-Ring