Weakly constant maps
module foundation.weakly-constant-maps where
Imports
open import foundation-core.dependent-pair-types open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.sets open import foundation-core.universe-levels
Idea
A map f : A → B
is said to be weakly constant if any two elements in A
are
mapped to identical elements in B
.
Definition
is-weakly-constant-map : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-weakly-constant-map {A = A} f = (x y : A) → f x = f y module _ {l1 l2 : Level} {A : UU l1} (B : Set l2) (f : A → type-Set B) where abstract is-prop-is-weakly-constant-map-Set : is-prop (is-weakly-constant-map f) is-prop-is-weakly-constant-map-Set = is-prop-Π (λ x → is-prop-Π (λ y → is-set-type-Set B (f x) (f y))) is-weakly-constant-map-Prop : Prop (l1 ⊔ l2) pr1 is-weakly-constant-map-Prop = is-weakly-constant-map f pr2 is-weakly-constant-map-Prop = is-prop-is-weakly-constant-map-Set