Congruence relations on monoids
module group-theory.congruence-relations-monoids where
Imports
open import foundation.binary-relations open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalence-relations open import foundation.equivalences open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.congruence-relations-semigroups open import group-theory.monoids
Idea
A congruence relation on a monoid M
is a congruence relation on the underlying
semigroup of M
.
Definition
is-congruence-monoid-Prop : {l1 l2 : Level} (M : Monoid l1) → Eq-Rel l2 (type-Monoid M) → Prop (l1 ⊔ l2) is-congruence-monoid-Prop M = is-congruence-semigroup-Prop (semigroup-Monoid M) is-congruence-Monoid : {l1 l2 : Level} (M : Monoid l1) → Eq-Rel l2 (type-Monoid M) → UU (l1 ⊔ l2) is-congruence-Monoid M R = is-congruence-Semigroup (semigroup-Monoid M) R is-prop-is-congruence-Monoid : {l1 l2 : Level} (M : Monoid l1) (R : Eq-Rel l2 (type-Monoid M)) → is-prop (is-congruence-Monoid M R) is-prop-is-congruence-Monoid M = is-prop-is-congruence-Semigroup (semigroup-Monoid M) congruence-Monoid : {l : Level} (l2 : Level) (M : Monoid l) → UU (l ⊔ lsuc l2) congruence-Monoid l2 M = Σ (Eq-Rel l2 (type-Monoid M)) (is-congruence-Monoid M) module _ {l1 l2 : Level} (M : Monoid l1) (R : congruence-Monoid l2 M) where eq-rel-congruence-Monoid : Eq-Rel l2 (type-Monoid M) eq-rel-congruence-Monoid = pr1 R prop-congruence-Monoid : Rel-Prop l2 (type-Monoid M) prop-congruence-Monoid = prop-Eq-Rel eq-rel-congruence-Monoid sim-congruence-Monoid : (x y : type-Monoid M) → UU l2 sim-congruence-Monoid = sim-Eq-Rel eq-rel-congruence-Monoid is-prop-sim-congruence-Monoid : (x y : type-Monoid M) → is-prop (sim-congruence-Monoid x y) is-prop-sim-congruence-Monoid = is-prop-sim-Eq-Rel eq-rel-congruence-Monoid concatenate-sim-eq-congruence-Monoid : {x y z : type-Monoid M} → sim-congruence-Monoid x y → y = z → sim-congruence-Monoid x z concatenate-sim-eq-congruence-Monoid H refl = H concatenate-eq-sim-congruence-Monoid : {x y z : type-Monoid M} → x = y → sim-congruence-Monoid y z → sim-congruence-Monoid x z concatenate-eq-sim-congruence-Monoid refl H = H concatenate-eq-sim-eq-congruence-Monoid : {x y z w : type-Monoid M} → x = y → sim-congruence-Monoid y z → z = w → sim-congruence-Monoid x w concatenate-eq-sim-eq-congruence-Monoid refl H refl = H refl-congruence-Monoid : is-reflexive-Rel-Prop prop-congruence-Monoid refl-congruence-Monoid = refl-Eq-Rel eq-rel-congruence-Monoid symm-congruence-Monoid : is-symmetric-Rel-Prop prop-congruence-Monoid symm-congruence-Monoid = symm-Eq-Rel eq-rel-congruence-Monoid equiv-symm-congruence-Monoid : (x y : type-Monoid M) → sim-congruence-Monoid x y ≃ sim-congruence-Monoid y x equiv-symm-congruence-Monoid x y = equiv-symm-Eq-Rel eq-rel-congruence-Monoid trans-congruence-Monoid : is-transitive-Rel-Prop prop-congruence-Monoid trans-congruence-Monoid = trans-Eq-Rel eq-rel-congruence-Monoid mul-congruence-Monoid : is-congruence-Monoid M eq-rel-congruence-Monoid mul-congruence-Monoid = pr2 R
Properties
Extensionality of the type of congruence relations on a monoid
relate-same-elements-congruence-Monoid : {l1 l2 l3 : Level} (M : Monoid l1) (R : congruence-Monoid l2 M) (S : congruence-Monoid l3 M) → UU (l1 ⊔ l2 ⊔ l3) relate-same-elements-congruence-Monoid M = relate-same-elements-congruence-Semigroup ( semigroup-Monoid M) refl-relate-same-elements-congruence-Monoid : {l1 l2 : Level} (M : Monoid l1) (R : congruence-Monoid l2 M) → relate-same-elements-congruence-Monoid M R R refl-relate-same-elements-congruence-Monoid M = refl-relate-same-elements-congruence-Semigroup (semigroup-Monoid M) is-contr-total-relate-same-elements-congruence-Monoid : {l1 l2 : Level} (M : Monoid l1) (R : congruence-Monoid l2 M) → is-contr ( Σ ( congruence-Monoid l2 M) ( relate-same-elements-congruence-Monoid M R)) is-contr-total-relate-same-elements-congruence-Monoid M = is-contr-total-relate-same-elements-congruence-Semigroup (semigroup-Monoid M) relate-same-elements-eq-congruence-Monoid : {l1 l2 : Level} (M : Monoid l1) (R S : congruence-Monoid l2 M) → R = S → relate-same-elements-congruence-Monoid M R S relate-same-elements-eq-congruence-Monoid M = relate-same-elements-eq-congruence-Semigroup (semigroup-Monoid M) is-equiv-relate-same-elements-eq-congruence-Monoid : {l1 l2 : Level} (M : Monoid l1) (R S : congruence-Monoid l2 M) → is-equiv (relate-same-elements-eq-congruence-Monoid M R S) is-equiv-relate-same-elements-eq-congruence-Monoid M = is-equiv-relate-same-elements-eq-congruence-Semigroup (semigroup-Monoid M) extensionality-congruence-Monoid : {l1 l2 : Level} (M : Monoid l1) (R S : congruence-Monoid l2 M) → (R = S) ≃ relate-same-elements-congruence-Monoid M R S extensionality-congruence-Monoid M = extensionality-congruence-Semigroup (semigroup-Monoid M) eq-relate-same-elements-congruence-Monoid : {l1 l2 : Level} (M : Monoid l1) (R S : congruence-Monoid l2 M) → relate-same-elements-congruence-Monoid M R S → R = S eq-relate-same-elements-congruence-Monoid M = eq-relate-same-elements-congruence-Semigroup (semigroup-Monoid M)