Path-split maps
module foundation-core.path-split-maps where
Imports
open import foundation-core.cartesian-product-types open import foundation-core.coherently-invertible-maps open import foundation-core.dependent-pair-types open import foundation-core.equivalences open import foundation-core.functions open import foundation-core.identity-types open import foundation-core.sections open import foundation-core.universe-levels
Idea
A map f : A → B
is said to be path split if it has a section and its action on
identity types Id x y → Id (f x) (f y)
has a section for each x y : A
. By
the fundamental theorem for identity types, it follows that a map is path-split
if and only if it is an equivalence.
Definition
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where is-path-split : UU (l1 ⊔ l2) is-path-split = sec f × ((x y : A) → sec (ap f {x = x} {y = y}))
Properties
A map is path-split if and only if it is an equivalence
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where abstract is-path-split-is-equiv : is-equiv f → is-path-split f pr1 (is-path-split-is-equiv is-equiv-f) = pr1 is-equiv-f pr2 (is-path-split-is-equiv is-equiv-f) x y = pr1 (is-emb-is-equiv is-equiv-f x y) abstract is-coherently-invertible-is-path-split : is-path-split f → is-coherently-invertible f pr1 (is-coherently-invertible-is-path-split ((g , issec-g) , sec-ap-f)) = g pr1 ( pr2 ( is-coherently-invertible-is-path-split ((g , issec-g) , sec-ap-f))) = issec-g pr1 ( pr2 ( pr2 ( is-coherently-invertible-is-path-split ((g , issec-g) , sec-ap-f)))) ( x) = pr1 (sec-ap-f (g (f x)) x) (issec-g (f x)) pr2 ( pr2 ( pr2 ( is-coherently-invertible-is-path-split ((g , issec-g) , sec-ap-f)))) ( x) = inv (pr2 (sec-ap-f (g (f x)) x) (issec-g (f x))) abstract is-equiv-is-path-split : is-path-split f → is-equiv f is-equiv-is-path-split = is-equiv-is-coherently-invertible ∘ is-coherently-invertible-is-path-split
See also
- For the notion of biinvertible maps see
foundation.equivalences
. - For the notions of inverses and coherently invertible maps, also known as
half-adjoint equivalences, see
foundation.coherently-invertible-maps
. - For the notion of maps with contractible fibers see
foundation.contractible-maps
.